Size constrained k simple polygons | GeoInformatica Skip to main content
Log in

Size constrained k simple polygons

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Given a geometric space and a set of weighted spatial points, the Size Constrained k Simple Polygons (SCkSP) problem identifies k simple polygons that maximize the total weights of the spatial points covered by the polygons and meet the polygon size constraint. The SCkSP problem is important for many societal applications including hotspot area detection and resource allocation. The problem is NP-hard; it is computationally challenging because of the large number of spatial points and the polygon size constraint. Our preliminary work introduced the Nearest Neighbor Triangulation and Merging (NNTM) algorithm for SCkSP to meet the size constraint while maximizing the total weights of the spatial points. However, we find that the performance of the NNTM algorithm is dependent on the t-nearest graph. In this paper, we extend our previous work and propose a novel approach that outperforms our prior work. Experiments using Chicago crime and U.S. Federal wildfire datasets demonstrate that the proposed algorithm significantly reduces the computational cost of our prior work and produces a better solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Arkin EM, Chiang YJ, Held M, Mitchell JSB, Sacristan V, Skiena S, Yang TC (1998) On minimum-area hulls. Algorithmica 21(1):119–136

    Article  Google Scholar 

  2. Bereg S, Daescu O, Zivanic M, Rozario T (2015) Smallest maximum-weight circle for weighted points in the plane. In: International conference on computational science and its applications. Springer, pp 244–253

  3. Blåsjö V (2005) The isoperimetric problem. Am Math Mon 112 (6):526–566

    Article  Google Scholar 

  4. Boyce JE, Dobkin DP, Drysdale RLS III, Guibas LJ (1982) Finding extremal polygons. In: Proceedings of the fourteenth annual ACM symposium on theory of computing. ACM, pp 282–289

  5. Braden B (1986) The surveyor’s area formula. Coll Math J 17 (4):326–337

    Article  Google Scholar 

  6. Bradley P, Bennett K, Demiriz A (2000) Constrained k-means clustering. Microsoft research, Redmond, pp 1–8

  7. City of Chicago Data Potal (2019) Crimes—2001 to present, https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2. Retrieved Feb. 2019

  8. Coxeter HSM (1989) Introduction to geometry. John Wiley & Sons

  9. De Berg M, Cheong O, Van Kreveld M, Overmars M (2008) Computational geometry: introduction. In: Computational geometry: algorithms and applications, pp 1–17

  10. Devadoss SL, O’Rourke J (2011) Discrete and computational geometry. Princeton University Press, Princeton

    Google Scholar 

  11. Elzinga DJ, Hearn DW (1972) The minimum covering sphere problem. Manag Sci 19(1):96–104

    Article  Google Scholar 

  12. Eppstein D, Overmars M, Rote G, Woeginger G (1992) Finding minimum areak-gons. Discrete Comput Geom 7(1):45–58

    Article  Google Scholar 

  13. Ertoz L, Steinbach M, Kumar V (2002) A new shared nearest neighbor clustering algorithm and its applications. In: Workshop on clustering high dimensional data and its applications at 2nd SIAM international conference on data mining, pp 105–115

  14. Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231

  15. Federal Wildland Fire Occurrence Data, https://wildfire.cr.usgs.gov/firehistory/data.html/, Retrieved Feb. 2019

  16. Fekete SP (2000) On simple polygonalizations with optimal area. Discrete Comput Geom 23(1):73–110

    Article  Google Scholar 

  17. Fekete SP, Pulleyblank WR (1993) Area optimization of simple polygons. In: Proceedings of the ninth annual symposium on computational geometry, pp 173–182

  18. Fulek R, Keszegh B, Morić F, Uljarević I (2013) On polygons excluding point sets. Graphs Comb 29(6):1741–1753

    Article  Google Scholar 

  19. Hearn DW, Vijay J (1982) Efficient algorithms for the (weighted) minimum circle problem. Oper Res 30(4):777–795

    Article  Google Scholar 

  20. Hêche J F, Liebling TM (1997) Finding minimum area simple pentagons. Oper Res Lett 21(5):229–233

    Article  Google Scholar 

  21. Hinneburg A, Gabriel HH (2007) Denclue 2.0: fast clustering based on kernel density estimation. In: International symposium on intelligent data analysis. Springer, pp 70–80

  22. Jiang M (2012) On covering points with minimum turns. In: Frontiers in algorithmics and algorithmic aspects in information and management. Springer, pp 58–69

  23. Karypis G, Han EH, Kumar V (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8):68–75

    Article  Google Scholar 

  24. Li X, Han J, Lee JG, Gonzalez H (2007) Traffic density-based discovery of hot routes in road networks. In: International symposium on spatial and temporal databases. Springer, pp 441–459

  25. Malinen MI, Fränti P (2014) Balanced k-means for clustering. In: Joint IAPR international workshops on statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR). Springer, pp 32–41

  26. Mitchell JS, Polishchuk V (2008) Minimum-perimeter enclosures. Inf Process Lett 107(3-4):120–124

    Article  Google Scholar 

  27. Munkres JR (2000) Topology. Prentice Hall, Upper Saddle River

    Google Scholar 

  28. Muravitskiy V, Tereshchenko V (2011) Generating a simple polygonalizations. In: 2011 15th international conference on information visualisation (IV). IEEE, pp 502–506

  29. Oliver D, Shekhar S, Kang JM, Laubscher R, Carlan V, Bannur A (2014) A k-main routes approach to spatial network activity summarization. IEEE Trans Knowl Data Eng 26(6):1464–1478

    Article  Google Scholar 

  30. Peethambaran J, Parakkat AD, Muthuganapathy R (2016) An empirical study on randomized optimal area polygonization of planar point sets. J Exp Algorithmics (JEA) 21:1–10

    Article  Google Scholar 

  31. Reich A, Ohriniuc R, Yang K (2018) Size constrained k simple polygons. In: Proceedings of the 26th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 500–503

  32. Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann

  33. Taranilla MT, Gagliardi EO, Hernández Peñalver G (2011) Approaching minimum area polygonization. In: XVII Congreso Argentino de Ciencias de la Computación

  34. Wang W, Yang J, Muntz R, et al. (1997) Sting: a statistical information grid approach to spatial data mining. In: VLDB, vol 97, pp 186–195

  35. Xu X, Yuruk N, Feng Z, Schweiger TA (2007) Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 824–833

  36. Yang K (2016) Distance-constrained k spatial sub-networks: a summary of results International conference on geographic information science. Springer, pp 68–84

Download references

Acknowledgements

We would like to thank the National Science Foundation CAREER under Grant No. 1844565.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KwangSoo Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Nam, K.W., Qutbuddin, A. et al. Size constrained k simple polygons. Geoinformatica 25, 43–67 (2021). https://doi.org/10.1007/s10707-020-00416-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-020-00416-9

Keywords

Navigation