Time-Consistent Equilibria in Common Access Resource Games with Asymmetric Players Under Partial Cooperation | Environmental Modeling & Assessment Skip to main content
Log in

Time-Consistent Equilibria in Common Access Resource Games with Asymmetric Players Under Partial Cooperation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Given a differential game, if agents have different time preference rates, cooperative (Pareto optimum) solutions obtained by applying Pontryagin’s maximum principle become time inconsistent. We derive a set of dynamic programming equations in continuous time whose solutions are time-consistent equilibria for problems in which agents differ in their utility functions and also in their time preference rates. The solution assumes cooperation between agents at every time. Since coalitions at different times have different time preferences, equilibrium policies are calculated by looking for Markov (subgame perfect) equilibria in a (noncooperative) sequential game. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in infinite horizon is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We refer to the preliminary version of this paper, de-Paz et al. [6], for the details.

  2. Along the paper, we will omit the subindex in x t if it is not strictly necessary.

  3. As in the standard case, the same DPE is obtained if x(T) is fixed.

References

  1. Barro, R.J. (1999). Ramsey meets Laibson in the neoclassical growth model. Quarterly Journal of Economics, 114, 1125–1152.

    Article  Google Scholar 

  2. Breton, M., & Keoula, M.Y. (2010). A great fish war model with asymmetric players. GERAD Working paper 2010–73.

  3. Breton, M., & Keoula, M.Y. (2012). Farsightedness in a coalitional great fish war. Environmental and Resource Economics, 51(2), 297–315.

    Article  Google Scholar 

  4. Clark, C.W. (1990). Mathematical bioeconomics: the optimal management of renewable resources. Wiley, New York.

    Google Scholar 

  5. Clemhout, S., & Wan, H.Y. (1985). Dynamic common property resources and environmental problems. Journal of Optimization Theory and Applications, 46(4), 471–481.

    Article  Google Scholar 

  6. de-Paz, A., Marín-Solano, J., Navas, J. (2011). Time consistent Pareto solutions in common access resource games with asymmetric players. Documents de treball (Facultat d’Economia i Empresa. Espai de Recerca en Economia), E11/253.

  7. Dockner, E. J., Jorgensen, S., Long, N.V, Sorger, G. (2000). Differential games in economics and management science. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  8. Ekeland, I., & Pirvu, T. (2008). Investment and consumption without commitment. Mathematics and Financial Economics, 2(1), 57–86.

    Article  Google Scholar 

  9. Frederick, S., Loewenstein, G., O’Donoghue, T. (2002). Time discounting and time preference: a critical review. Journal of Economic Literature 40, 351–401.

    Article  Google Scholar 

  10. Gollier, C., & Zeckhauser, R. (2005). Aggregation of heterogeneous time preferences. The Journal of Political Economy, 113(4), 878–896.

    Article  Google Scholar 

  11. Haurie, A. (1976). A note on nonzero-sum differential games with bargaining solution. Journal of Optimization Theory and Applications, 18(1), 31–39.

    Article  Google Scholar 

  12. Jouini, E., Marin, J.M., Napp, C. (2010). Discounting and divergence of opinion. Journal of Economic Theory, 145, 830–859.

    Article  Google Scholar 

  13. Jorgensen, S., Martín-Herran, G., Zaccour, G. (2010). Dynamic games in the economics and management of pollution. Environmental Modeling and Assessment, 15, 433–467.

    Article  Google Scholar 

  14. Karp, L. (2007). Non-constant discounting in continuous time. Journal of Economic Theory, 132, 557–568.

    Article  Google Scholar 

  15. Karp, L., & Tsur, Y. (2011). Time perspective and climate change policy. Journal of Environmental Economics and Management, 62(1), 1–14.

    Article  Google Scholar 

  16. Li, C.Z., & Löfgren, K.G. (2000). Renewable resources and economic sustainability: a dynamic analysis with heterogeneous time preferences. Journal of Enviromental Economics and Management 40, 236–250.

    Article  Google Scholar 

  17. Long, N.V. (2011). Dynamic games in the economics of natural resources: a survey. Dynamic Games and Applications, 1(1), 115–148.

    Article  Google Scholar 

  18. Long, N.V., Shimomura, K., Takahashi, H. (1999). Comparing open-loop with Markov equilibria in a class of differential games. The Japanese Economic Review, 50(4), 457–469.

    Article  Google Scholar 

  19. Marín-Solano, J., & Navas, J. (2009). Non-constant discounting in finite horizon: the free terminal time case. Journal of Economic Dynamics and Control, 33(3), 666–675.

    Article  Google Scholar 

  20. Marín-Solano, J., & Patxot, C. (2012). Heterogeneous discounting in economic problems. Optimal Control Applications and Methods, 33(1), 32–50.

    Article  Google Scholar 

  21. Marín-Solano, J., & Shevkoplyas, E.V. (2011). Non-constant discounting and differential games with random horizon. Automatica, 47(12), 2626–2638.

    Article  Google Scholar 

  22. Petrosyan, L.A. and Zaccour, G. (2003). Time-consistent Shapley value allocation of pollution cost reduction. Journal of Economic Dynamics and Control, 27, 381–398.

    Article  Google Scholar 

  23. Pollak, R.A. (1968). Consistent planning. Review of Economic Studies 35, 201–208.

    Article  Google Scholar 

  24. Sorger, G. (2006). Recursive bargaining over a productive asset. Journal of Economic Dynamics and Control, 30, 2637–2659.

    Article  Google Scholar 

  25. Strotz, R.H. (1956). Myopia and inconsistency in dynamic utility maximization. Review of Economic Studies 23, 165–180.

    Article  Google Scholar 

  26. Yeung, D.W.K., & Petrosyan, L.A. (2006). Cooperative stochastic differential games. Springer, New York.

    Google Scholar 

  27. Zaccour, G. (2008). Time consistency in cooperative differential games: a tutorial. INFOR, 46(1), 81–92.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the referee and the associate editor for their valuable comments. This work has been partially supported by MEC (Spain) Grant ECO2010-18015. J. Navas also acknowledges financial support from the Consejería de Educación de la Junta de Castilla y León (Spain) under project VA056A09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Marín-Solano.

Appendix

Appendix

Solution of the DPE (16) We guess for a value function of the form W(x,y,t) = A(t)ln (x) + B(t)y + C(t). If this choice proves to be consistent, the extraction rates for both agents are given by c 1(t) = 1/W x  = x/A(t) and c 2(t) = W y / W x  = B(t)x/A(t). In order to solve Eq. 16, we calculate the expression for K(x,t). To do that, we substitute our “guessed” controls in Eq. 15. Hence, \(x(s)=x_t \exp\left(\Lambda_t(s)\right)\), with \(\Lambda_t(s)=-\int_t^s \frac{1+B(\tau)}{A(\tau)} d \tau\). Therefore, \(K(x,y,t)= (r_1-r_2)\int_t^T e^{-r_1(s-t)} \ln \big( \frac{x_t e^{\Lambda_t(s)}}{A(s)} \big) ds = \frac{r_1-r_2}{r_1}\big( 1-e^{-r_1(T-t)}\big) \ln(x_t) + (r_1-r_2)\int_t^T e^{-r_1(s-t)} \ln \big( \frac{e^{\Lambda_t(s)}}{A(s)} \big) ds\). By substituting in Eq. 16 and simplifying, we obtain

$$\begin{array}{lll} r_2 \left[A(t)\ln(x)\!+\!B(t)y\!+\!C(t) \right]\!-\!\left[\! A'(t)\ln(x)\!+\!B'(t)y\!+\!C'(t)\! \right] \\ \quad+ \frac{r_1-r_2}{r_1}\left( 1-e^{-r_1(T-t)}\right) \ln(x) \\ \quad + (r_1-r_2)\int_t^T e^{-r_1(s-t)} \ln \left( \frac{e^{\Lambda_t(s)}}{A(s)} \right) ds \\\qquad=\ln (x)- \ln \left(A(t)\right) -1- B(t)\\\qquad+B(t)\left(r_2y+\ln(x)+\ln\left( \frac{B(t)}{A(t)} \right) \right). \end{array}$$

Since the above equation must be satisfied for every x and y, then

$$\label{aa} r_2 A(t)\!-\!A'(t) \!+\! \frac{r_1\!-\!r_2}{r_1}\!\left( 1\!-\!e^{-r_1(T-t)}\right) \!=\! 1\!+\!B(t)\; ,~B^\prime(t)\!=\!0. $$
(38)

Using the terminal condition B(T) = 1, we obtain B(t) = 1 and c 1(t) = c 2(t) = x/A(t), for every t ∈ [0,T]. With respect to A(t), note that if \(A(t)=\sum_{i=1}^2 \frac{1-e^{-r_i(T-t)}}{r_i}\), which describes the solution for a naive coalition (see (14)), then (38) is satisfied and, in addition, the solution to the state equation \(\dot{x}(t)=-2 x(t)/A(t)\) verifies the terminal condition lim tT x(t) = 0. Therefore, the naive solution verifies the DPE (16).

Derivation of the Dynamic Programming Algorithm in Discrete Time (21) In the final period, we define \(V_n^*=0\), as usual. For j = n − 1, the optimal value for (19) will be given by the solution to the problem

$$\begin{array}{lll} V_{(n-1)}^*(x_{(n-1)},(n-1)\epsilon) \\ \quad = \max\limits_{\{c_{(n-1)}\}} \left\{ \sum\limits_{m=1}^N \lambda_m U^m(x_{(n-1)}, c_{(n-1)},(n-1)\epsilon)\epsilon \right\}\; , \end{array}$$

with x n  = x (n − 1) + f(x (n − 1), u (n − 1),(n − 1)ε)ε. If \(c^*_{(n-1)}(x_{(n-1)},(n-1)\epsilon)\) is the maximizer of the right-hand term of the above equation, let us denote

$$\begin{array}{lll}{\bar U}_{(n-1)}^m (x_{(n-1)},(n-1)\epsilon) \\ \quad=U^m(x_{(n-1)}, c_{(n-1)}^*(x_{(n-1)},(n-1)\epsilon),(n-1)\epsilon)\; . \end{array}$$

In general, for j = 1,...,n − 1, the value \(V_j^*(x_j,j\epsilon)\) in (19) can be written as

$$\begin{array}{rll} V_j^* &=& \max\limits_{\{c_{j}\}} \left\{ \sum\limits_{m=1}^N \lambda_m U^m(x_j, c_j,j\epsilon)\epsilon \right.\\ &&\left. + \sum\limits_{k=1}^{n-j-1} \!\sum\limits_{m=1}^N \lambda_m e^{-r_m k \epsilon} {\bar U}_{(j+k)}^m (x_{(j+k)},(j\!+\!k)\epsilon)\epsilon \right\}.\notag\end{array}$$
(39)

Since

$$\begin{array}{lll}V_{(j+1)}^*(x_{(j+1)},(j+1)\epsilon) \\ \quad= \sum\limits_{i=0}^{n-j-2} \sum\limits_{m=1}^N \lambda_m e^{-r_m i \epsilon} {\bar U}_{(j+i+1)}^m (x_{(j+i+1)},(j+i+1)\epsilon)\epsilon , \end{array}$$

then we can write \(V_{(j+1)}^*(x_{(j+1)},(j+1)\epsilon) - \sum_{i=0}^{n-j-2}\) \( \sum_{m=1}^N \,\,\lambda_m e^{-r_m i \epsilon} \,\,{\bar U}_{(j+i+1)}^m \,\,(x_{(j+i+1)},\,\,(j\,+\,i\,+\,1)\epsilon)\epsilon \,=\,0\). Adding the former expression to (39), we obtain (21).

Derivation of the DPE in Continuous Time (22) Let W m(x,t) be a continuously differentiable function representing the value function of player m in the t coalition, and let \(W(x,t)=\sum_{m=1}^N W^m(x,t)\) be the value function for the t coalition, with initial condition x(t) = x. Since s = , for sufficiently small ε, x(s + ε) − x(s) ≅ f(x(s),c(s),s)ε, W(x(t),t) ≅ V j (x j , ), and \(W(x(t+\epsilon),t+\epsilon)=W(x(t),t)+\nabla_xW(x(t),t)\cdot\) \( f(x(t),c(t),t)\epsilon+\nabla_t W(x(t),t)\epsilon+o(\epsilon)\). Substituting in (21), we obtain

$$\begin{array}{lll} W(x(t),t)\\ \quad=\max\limits_{\{c_{t} \}} \!\left\{ \sum\limits_{m=1}^N \lambda_m U^m(x(t),c(t),t)\epsilon+W(x(t),t) \right. \\\quad\quad\left. +\nabla_{x} W(x(t),t) \cdot\! f(x(t),c(t),t)\epsilon + \nabla_{t}W(x(t),t)\epsilon \right.\\\quad\quad\left.- \sum_{m=1}^N \left(1-e^{r_m \epsilon}\right) W^m(x(t),t) +o(\epsilon) \right\}, \end{array}$$
(40)

where

$$ \label{kdis_N} W^m(x(t),t)=\sum_{k=1}^{n-j-1} \lambda_m e^{-r_m k \epsilon} {\bar U}_{(j+k)}^m(x_{(j+k)},(j+k)\epsilon)\epsilon . $$
(41)

Finally, by dividing (40) and (41) by ε and taking the limit ε→0, we obtain Eq. 22.

Derivation of the DPE (32) Without lack of generality, for simplicity, we take λ 1 = ⋯ = λ N  = 1. If c *(s) = φ(s,x(s)) is the equilibrium rule, then the value function is

$$\label{valuefunction} W(x,t)= \sum\limits_{m=1}^N \int_t^\tau e^{-r_m(s-t)} U^m(x(s),\phi(x(s),s),s)\, ds $$
(42)

where \(\dot{x}(s)=f(x(s),\phi(x(s),s),s)\), x(t) = x t . We assume that if τ = ∞, along the equilibrium rule, the value function (42) is finite (i.e., the integral converges). This is guaranteed if we restrict our attention to strategies φ(x,s) of class C 1 such that, when t→ ∞, the state variables converge to a stationary state.

Next, for ε > 0, let us consider the variations

$$ c_\epsilon(s)=\left\{ \begin{array}{ccc} v(s) & \hbox{if} & s\in[t,t+\epsilon]\; , \\[4pt] \phi(x,s) & \hbox{if} & s>t+\epsilon\; . \end{array}\right. $$

If the t agent can precommit her behavior during the period [t,t + ε], the value function for the perturbed control path c ε is given by

$$\begin{array}{lll}W_\epsilon(x,t)\\ \quad= \max\limits_{\{ v(s),\; s\in[t,t+\epsilon]\}} \left\{ \sum\limits_{m=1}^N \int_t^{t+\epsilon} e^{-r_m (s-t)}U^m\left(x(s),v(s),s\right)ds\right.\\ \quad\quad\left. + \sum\limits_{m=1}^N\int_{t+\epsilon}^\tau e^{-r_m(s-t)} U^m(x(s),\phi(x(s),s),s)\, ds\right\}\; . \end{array}$$

Let us assume that W ε is differentiable in ε in a neighborhood of ε = 0. Then, c *(s) = φ(s,x(s)) is called an equilibrium rule if

$$\label{def1} \lim_{\epsilon\to 0^+}\frac{W(x,t)-W_{\epsilon}(x,t)}{\epsilon} \geq 0\; . $$
(43)

The above definition can be interpreted as follows: for sufficiently small ε, the maximum of W ε in the limit when ε = 0 is precisely W(x,t). In order to prove that c *(t) = φ(x,t) solving the right-hand term in Eq. 32 is an equilibrium rule, we have to check Eq. 43. We do it in several steps:

If \(\bar{x}(s)\) denotes the state trajectory corresponding to the decision rule c ε (s), then

$$\begin{array}{lll} &&{\kern-6pt}W(x,t)-W_\epsilon(x,t) \\[6pt] &&= \sum\limits_{m=1}^N \int_t^{t+\epsilon} e^{-r_m(s-t)} \left[ U^m(x(s),\phi(x(s),s),s) \right.\\[6pt] &&\left.{\kern6pt}- U^m(\bar{x}(s),v(s),s)\right]\, ds\\[6pt] &&{\kern6pt}+\sum\limits_{m=1}^N \int_{t+\epsilon}^\tau e^{-r_m(s-t)} \left[ U^m(x(s),\phi(x(s),s),s) \right.\\[6pt] &&{\kern6pt}\left.- U^m(\bar{x}(s),\phi(\bar{x}(s),s),s)\right]\, ds\; . \end{array}$$

Note that

$$\begin{array}{lll}\sum\limits_{m=1}^N \int_{t+\epsilon}^\tau e^{-r_m(s-t)} U^m(x(s),\phi(x(s),s),s) \, ds\ \\\quad= W(x(t+\epsilon),t+\epsilon) -\sum_{m=1}^N \int_{t+\epsilon}^\tau \left[ e^{-r_m(s-t-\epsilon)} \right.\\\quad\quad\left.- e^{-r_m(s-t)}\right] U^m(x(s),\phi(x(s),s),s) \, ds\; . \end{array}$$

In a similar way,

$$\begin{array}{lll}\sum\limits_{m=1}^N \int_{t+\epsilon}^\tau e^{-r_m(s-t)} U^m({\bar x}(s),\phi({\bar x}(s),s),s) \, ds\ \\\quad= W({\bar x}(t+\epsilon),t+\epsilon)-\sum_{m=1}^N \int_{t+\epsilon}^\tau\left[ e^{-r_m(s-t-\epsilon)} \right.\\\quad\quad\left.- e^{-r_m(s-t)}\right] U^m({\bar x}(s),\phi({\bar x}(s),s),s) \, ds \; . \end{array}$$

Therefore,

$$\begin{array}{lll}\lim\limits_{\epsilon\to 0^+} \frac{W(x,t)-W_\epsilon(x,t)}{\epsilon} = \lim\limits_{\epsilon\to 0^+}\frac{\sum_{m=1}^N\int_t^{t+\epsilon} e^{-r_m(s-t)}\left[ U^m(x(s),\phi(x(s),s),s) - U^m(\bar{x}(s),v(s),s)\right] ds}{\epsilon}\\ \quad+\lim\limits_{\epsilon\to 0^+}\frac{1}{\epsilon}\sum\limits_{m=1}^N\left[ \int_{t+\epsilon}^\tau\left[ e^{-r_m(s-t)} - e^{-r_m(s-t-\epsilon)}\right]\left[ U^m(x(s),\phi(x(s),s),s) - U^m(\bar{x}(s),\phi(\bar{x}(s),s),s) \right] ds\right]\\ \quad+\lim\limits_{\epsilon\to 0^+} \frac{W(x(t+\epsilon),t+\epsilon) - W(\bar{x}(t+\epsilon),t+\epsilon)}{\epsilon} = \sum\limits_{m=1}^N \left[ U^m(x(t),\phi(x(t),t),t) - U^m(x(t),v(t),t)\right]\\ \quad+ 0 + \lim\limits_{\epsilon\to 0^+} \frac{W(x(t+\epsilon),t+\epsilon) - W(x(t),t)}{\epsilon} - \lim\limits_{\epsilon\to 0^+} \frac{W(\bar{x}(t+\epsilon),t+\epsilon)- W(x(t),t)}{\epsilon}\\ = \sum\limits_{m=1}^N \left[ U^m(x(t),\phi(x(t),t),t) - U^m(x(t),v(t),t)\right] + \left[\frac{\partial W(x,t)}{\partial t} + \nabla_x W(x,t)\cdot f(x,\phi(x,t),t)\right]\\ \quad- \left[ \frac{\partial W(x,t)}{\partial t} + \nabla_x W(x,t)\cdot f(x,v(t),t)\right] = \sum\limits_{m=1}^N\left[ U^m(x,\phi(x,t),t) + \nabla_x W^m(x,t)\cdot f(x,\phi(x,t),t)\right]\\ \quad- \sum\limits_{m=1}^N\left[ U^m(x,v(t),t) + \nabla_x W^m(x,t)\cdot f(x,v(t),t)\right]\geq 0\; , \end{array}$$

since c * = φ(x,t) is the maximizer of the right-hand term in Eq. 32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de-Paz, A., Marín-Solano, J. & Navas, J. Time-Consistent Equilibria in Common Access Resource Games with Asymmetric Players Under Partial Cooperation. Environ Model Assess 18, 171–184 (2013). https://doi.org/10.1007/s10666-012-9339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9339-x

Keywords