Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea | Environmental Monitoring and Assessment Skip to main content

Advertisement

Log in

Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Water pollution such as green algae blooms and eutrophication in freshwater fatally influences both water quality and human society. Water quality issues in the 4 major rivers in Korea, including the Nakdong, have recently become a major concern. For this reason, it is essential to monitor water quality parameters (WQPs) that have a widespread characteristic to ensure maintenance of an effective water management system. The possibility of utilizing remote sensing technology for monitoring water quality on a regional scale has been recently investigated. The main objective of this study is to evaluate potential applications of the Landsat 8 Operational Land Imager (OLI) for estimating water quality in the Nakdong River, Korea. Correlations between Landsat 8 bands and in situ measurements are determined, and water quality models are established for estimating suspended solids (SS), total nitrogen (TN), chlorophyll-a (Chl-a), and total phosphorus (TP). The results demonstrate that WQPs correlated well with band reflectance values from Landsat 8. Band 5 was reasonably correlated with all WQPs, particularly with SS (R = −0.74) and Chl-a (R = −0.71). This study constructed multiple regression equations for WQPs based on correlation analysis through band combination and band ratio. The spatial distribution of WQPs in the Nakdong River on October 27, 2013 and May 16, 2014 indicate that the river was nearly eutrophic from human activities. Based on the results, the Landsat 8 OLI may be an appropriate data for estimating and monitoring water quality parameters on a regional scale. However, further validation is required to support the findings of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alparslan, E., Aydöner, C., Tufekci, V., & Tüfekci, H. (2007). Water quality assessment at Ömerli Dam using remote sensing techniques. Environmental Monitoring and Assessment, 135(1-3), 391–398.

    Article  CAS  Google Scholar 

  • Bartram, J., & Balance, R. (1996). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. CRC Press

  • Bhatti, A. M., Nasu, S., Takagi, M., & Nojiri, Y. (2008). Assessing the potential of remotely sensed data for water quality monitoring of coastal and inland waters. Bulletin of Kochi University of Technology, 5(1), 201–207.

    Google Scholar 

  • Bhavsar, P. (1984). Review of remote sensing applications in hydrology and water resources management in India. Advances in Space Research, 4(11), 193–200.

    Article  Google Scholar 

  • Bolgrien, D. W., Granin, N. G., & Levin, L. (1995). Surface temperature dynamics of Lake Baikal observed from AVHRR images. Photogrammetric Engineering & Remote Sensing, 61(2), 211–216.

    Google Scholar 

  • Brivio, P., Giardino, C., & Zilioli, E. (2001). Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. International Journal of Remote Sensing, 22(2-3), 487–502.

    Article  Google Scholar 

  • Bustamante, J., Pacios, F., Díaz-Delgado, R., & Aragonés, D. (2009). Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. Journal of Environmental Management, 90(7), 2219–2225.

    Article  Google Scholar 

  • Büttner, G., Korándi, M., Gyömörei, A., Köte, Z., & Szabó, G. (1987). Satellite remote sensing of inland waters: Lake Balaton and reservoir Kisköre. Acta Astronautica, 15(6–7), 305–311.

    Article  Google Scholar 

  • Carrick, H. J., Worth, D., & Marshall, M. L. (1984). The influence of water circulation on chlorophyll-turbidity relationships in Lake Okeechobee as determined by remote sensing. Journal of Plankton Research, 16(9), 1117–1135.

    Article  Google Scholar 

  • Chacon-Torres, A., Ross, L., Beveridge, M., & Watson, A. (1992). The application of SPOT multispectral imagery for the assessment of water quality in Lake Patzcuaro, Mexico. International Journal of Remote Sensing, 13(4), 587–603.

    Article  Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections—revisited and improved. Photogrammetric Engineering & Remote Sensing, 62(9), 1025–1035.

    Google Scholar 

  • Choi, E. Y., Lee, H. W., & Lee, K. J. (2011). Estimation of chlorophyll-a concentrations in the Nakdong River using high-resolution satellite image. Korean Journal of Remote Sensing, 27(5), 613–623.

    Article  Google Scholar 

  • Dekker, A., & Peters, S. (1993). The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821.

    Article  Google Scholar 

  • Dekker, A., Zamurović-Nenad, Ž., Hoogenboom, H., & Peters, S. (1996). Remote sensing, ecological water quality modelling and in situ measurements: a case study in shallow lakes. Hydrological Science Journal, 41(4), 531–547.

    Article  CAS  Google Scholar 

  • Dekker, A. G., Vos, R., & Peters, S. (2002). Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. International Journal of Remote Sensing, 23(1), 15–35.

    Article  Google Scholar 

  • Giardino, C., Pepe, M., Brivio, P. A., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Science of Total Environment, 268(1), 19–29.

    Article  CAS  Google Scholar 

  • Giardino, C., Bresciani, M., Cazzanigq, I., Schenk, K., Rieger, P., Braga, F., Matta, E., & Brando, V. (2014). Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda. Sensors, 14(12), 24116–24131.

    Article  CAS  Google Scholar 

  • Gitelson, A., Garbuzov, G., Szilagyi, F., Mittenzwey, K., Karnieli, A., & Kaiser, A. (1993). Quantitative remote sensing methods for real-time monitoring of inland waters quality. International Journal of Remote Sensing, 14(7), 1269–1295.

    Article  Google Scholar 

  • Haddad, K. D., & Harris, B. A. (1985). Assessment and trends of Florida’s marine fisheries habitat: an integration of aerial photography and thematic mapper imagery. In S. K. Mengel & D. B. Morrison (Eds.), Eleventh International Symposium, machine processing of remotely sensed data with special emphasis on quantifying global processes: models, sensor systems, and analytical methods (pp. 130–138). West Lafayette: Indiana Purdue University laboratory for applications of remote sensing.

    Google Scholar 

  • Han, L., & Rundquist, D. C. (1997). Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in a turbid reservoir. Remote Sensing Environment, 62(3), 253–261.

    Article  Google Scholar 

  • He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-polluted inland water body through remote sensing—case study of the Guanting Reservoir in Beijing. Frontiers of Environmental Science & Engineering in China, 2(2), 163–171.

    Article  Google Scholar 

  • Hellweger, F., Schlosser, P., Lall, U., & Weissel, J. (2004). Use of satellite imagery for water quality studies in New York Harbor. Estuarine Coastal Shelf Science, 61(3), 437–448.

    Article  CAS  Google Scholar 

  • Hudson, S., Moore, G., Bale, A., Dyer, K., & Aiken, J. (1994). An operational approach to determining suspended sediment distributions in the Humber estuary by airborne multi-spectral imagery. Proceedings of the international airborne remote sensing conference and exibition. 10–20.

  • Jeong, Y. J., Hong, Y. S., Han, H. J., Ahn, J. H., Cho, E.S., & Lee, S. I. (2010). Analysis and management of algal bloom in the Nakdong River. Korea Environment Istitute public policy paper.

  • Kim, T. G., Kim, K. E., Cho, G. S., & Kim, H. G. (1996). Monitoring of lake water quality using Landsat TM imagery data. Journal of the Korean Society for Geospatial Information System, 4(2), 23–33.

    Google Scholar 

  • Kim, S. I., Kim, H. C., & Hyun, C. U. (2014). High Resolution Ocean Color products estimation in Fjord of Svalbard, Arctic sea using Landsat 8 OLI. Korea Journal of Remote Sensing, 30(6), 809–816.

    Article  Google Scholar 

  • Kloiber, S. M., Brezonik, P. L., Olmanson, L. G., & Bauer, M. E. (2002). A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sensing Environment, 82(1), 38–47.

    Article  Google Scholar 

  • Lathrop, R. (1992). Landsat Thematic Mapper monitoring of turbid inland water quality. Photogrammetric Engineering & Remote Sensing, 58(4), 465–470.

    Google Scholar 

  • Lee, J. H., Kwon, J. N., & Yang, S. Y. (2002). Seasonal variation of phytoplankton community in the Nakdong River. The Korea Society of Phycology, 17(4), 267–273.

    Google Scholar 

  • Miller, H. M., Sexton, N. R., Koontz, L., Loomis, J., Koontz, S. R., & Hermans, C. (2011). The users, uses, and value of Landsat and other moderate-resolution satellite imagery in the United States—Executive report. US Geological Survey Open-File Report, 1031, 42.

    Google Scholar 

  • Nas, B., Ekercin, S., Karabörk, H., Berktay, A., & Mulla, D. J. (2010). An application of Landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollution, 212(1-4), 183–197.

    Article  CAS  Google Scholar 

  • Oyama, Y., Matsushita, B., Fukushima, T., Matsushige, K., & Imai, A. (2009). Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS J. Photogrammetric Remote Sensing, 64(1), 73–85.

    Article  Google Scholar 

  • Park, H. J., Yoo, S. J., Lee, B. H., Jeong, J. W., An, H. G., & Park, W. W. (2001). Pollution characteristics and application of river sediment of the Western Nakdong River. Korean Journal of Environmental Health Society, 27(1), 51–55.

    CAS  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., & Saffouri, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.

    Article  CAS  Google Scholar 

  • Quibell, G. (1991). The effect of suspended sediment on reflectance from freshwater algae. International Journal of Remote Sensing, 12(1), 177–182.

    Article  Google Scholar 

  • Ritchie, J. C., Cooper, C. M., & Schiebe, F. R. (1990). The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sensing of Environment, 33(2), 137–148.

    Article  Google Scholar 

  • Ritchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing, 69(6), 695–704.

    Article  Google Scholar 

  • Roy, M. D., WulderLoveland, T., CE, W., Allen, R., Anderson, M., Helder, D., Irons, J., Johnson, D., & Kennedy, R. (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sensing Environment, 145, 154–172.

    Article  Google Scholar 

  • Song, K., Wang, Z., Blackwell, J., Zhang, B., Li, F., Zhang, Y., & Jiang, G. (2011). Water quality monitoring using Landsat Themate Mapper data with empirical algorithms in Chagan Lake, China. Journal of Applied Remote Sensing, 5(1), 053506–053516. doi:10.1117/1.3559497.

    Article  Google Scholar 

  • Sudheer, K., Chaubey, I., & Garg, V. (2006). Lake water quality assessment from Landsat thematic mapper data using neural network: an approach to optimal band combination selection 1. Journal of the American Water Resources Association, 42(6), 1683–1695. doi:10.1111/j.1752-1688. tb06029.x.

    Article  Google Scholar 

  • Sun, D., Hu, C., Qiu, Z., & Shi, K. (2015). Estimation phycocyanin pigment concentration in productive inland waters using Landsat measurements: a case study in Lake Dianchi. Optics Express, 23(3), 3055–3074.

    Article  Google Scholar 

  • Svab, E., Tyler, A., Preston, T., Presing, M., & Balogh, K. (2005). Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations. International Journal of Remote Sensing, 26(5), 919–928.

    Article  Google Scholar 

  • Thiemann, S., & Kaufmann, H. (2000). Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake District, Germany. Remote Sensing Environment, 73(2), 227–235.

    Article  Google Scholar 

  • Tolk, B., Han, L., & Rundquist, D. (2000). The impact of bottom brightness on spectral reflectance of suspended sediments. International Journal of Remote Sensing, 21(11), 2259–2268.

    Article  Google Scholar 

  • Vignolo, A., Pochettino, A., & Cicerone, D. (2006). Water quality assessment using remote sensing techniques: Medrano Creek, Argentina. Jounal of Environmental Management, 81(4), 429–433.

    Article  Google Scholar 

  • Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data. Science of Total Environment, 328(1), 195–206.

    Article  CAS  Google Scholar 

  • Wang, F., Han, L., Kung, H. T., & Van Arsdale, R. (2006). Applications of Landsat5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee. International Jounal Remote Sensing, 27(23), 5269–5283.

    Article  Google Scholar 

  • Yang, S. Y., Seo, J. K., Lee, J. J., Kim, M. S., Lee, H. J., & Kwon, Y. H. (2004) Investigation on the algal bloom characteristics and control method for bloom forming algae in the Nakdong river(II). National Institute of Environmental Research.

  • Zhou, W., Wang, S., Zhou, Y., & Troy, A. (2006). Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat 5 TM data. International Journal of Remote Sensing, 27(6), 1177–1191.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Space Core Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014M1A3A3A02034789). Landsat 8 data was obtained from the US Geological Survey’s Earth Resources Observation and Science (EROS) Center (http://landsat.usgs.gov/Landsat_Search_and_Download.php). We would like to thank the National Institute of Environmental Research (NIER) for providing ground data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minha Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ Monit Assess 187, 384 (2015). https://doi.org/10.1007/s10661-015-4616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4616-1

Keywords

Navigation