Abstract
The concentration of chlorophyll a (chl a; as a proxy for phytoplankton biomass) provides an indication of the water quality and ecosystem health of lakes. An automated image processing method for Landsat images was used to derive chl a concentrations in 12 Rotorua lakes of North Island, New Zealand, with widely varying trophic status. Semi-analytical and empirical models were used to process 137 Landsat 7 Enhanced Thematic Mapper (ETM+) images using records from 1999 to 2013. Atmospheric correction used radiative transfer modelling, with atmospheric conditions prescribed with Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and AIRS data. The best-performing semi-analytical and empirical equations resulted in similar levels of variation explained (r 2 = 0.68 for both equations) and root-mean-square error (RMSE = 10.69 and 10.43 μg L−1, respectively) between observed and estimated chl a. However, the symbolic regression algorithm performed better for chl a concentrations <5 μg L−1. Our Landsat-based algorithms provide a valuable method for synoptic assessments of chl a across the 12 lakes in this region. They also provide a basis for assessing changes in chl a individual lakes through time. Our methods provide a basis for cost-effective hindcasting of lake trophic status at a regional scale, informing on spatial variability of chl a within and between lakes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Allan, M. G., Hamilton, D. P., Hicks, B. J., & Brabyn, L. (2011). Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. International Journal of Remote Sensing, 32(7), 2037–2055.
Babin, M. (2003). Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 108(3211).
Babin, M., Therriault, J.-C., Legendre, L., & Condal, A. (1993). Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production. Limnology and Oceanography, 38, 154–177.
Babin, M., Cullen, J., & Roesler, C. (2005). New approaches and technologies for observing harmful algal blooms. Oceanography, 18, 210–227.
Blondeau-Patissier, D., Brando, V. E., Oubelkheir, K., Dekker, A. G., Clementson, L. A., & Daniel, P. (2009). Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia. Journal of Geophysical Research, 114(C05003).
Bricaud, A. (2004). Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. Journal of Geophysical Research, 109, C11010.
Bricaud, A., & Morel, A. (1981). Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Research. Part A. Oceanographic Reseach Papers, 28, 1375–1393.
Brivio, P. A., Giardino, C., & Zilioli, E. (1997). The satellite derived optical information for the comparative assessment of lacustrine water quality. Science of the Total Environment, 196, 229–245.
Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., & Pozdnyakov, D. V. (1995). Optical properties and remote sensing of inland and coastal waters (p. 362). Boca Raton: CRC Press.
Burns, N., McIntosh, J., & Scholes, P. (2005). Strategies for managing the lakes of the Rotorua District, New Zealand. Lake and Reservoir Management, 21, 61–72.
Burns, N., McIntosh, J., & Scholes, P. (2009). Managing the lakes of the Rotorua District, New Zealand. Lake and Reservoir Management, 25, 284–296.
Chen, C., Wang, L., Ji, R., Budd, J. W., Schwab, D. J., Beletsky, D., Cotner, J. (2004). Impacts of suspended sediment on the ecosystem in Lake Michigan: a comparison between the 1998 and 1999 plume events. Journal of Geophysical Research, 109, C10S11
Davies-Colley, R. J., & Vant, W. N. (1987). Absorption of light by yellow substance in freshwater lakes. Limnology and Oceanography, 32, 416–425.
Dekker, A. G. (1993). Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Amsterdam: Free University.
Dekker, A. G., & Peters, S. W. M. (1993). The use of the thematic mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799–821.
Dekker, A. G., Hoogenboom, H. J., Goddijn, L. M., & Malthus, T. J. M. (1997). Relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sensing Reviews, 15, 59–74.
Dekker, A. G., Peters, S. W. M., Vos, R., & Rijkeboer, M. (2001a). Remote sensing for inland water quality detection and monitoring. In A. van Dijk & M. G. Bos (Eds.), GIS and remote sensing techniques in land- and water management. Netherlands: Kluwer Academic Publishers.
Dekker, A. G., Vos, R. J., & Peters, S. W. M. (2001b). Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. The Science of the Total Environment, 268, 197–214.
Dekker, A. G., Brando, V. E., Anstee, J. M., Pinnel, N., Kutser, T., Hoogenboom, H. J., & Malthus, T. J. (2002a). Imaging spectrometry of water. In F. van der Meer & S. M. de Jong (Eds.), Imaging spectrometry: basic principles and prospective applications (pp. 307–359). Dordrecht: Kluwer.
Dekker, A. G., Voss, R. J., & Peters, S. W. M. (2002b). Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data. International Journal of Remote Sensing, 23, 15–35.
Devred, E., Sathyendranath, S., Stuart, V., & Platt, T. (2011). A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sensing of Environment, 115, 2255–2266.
Dierssen, H. M. (2010). Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 107, 17073–17078.
Dubelaar, G. B., Visser, J. W., & Donze, M. (1987). Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles. Cytometry, 8, 405–412.
Giardino, C., Pepe, M., Brivio, P., Ghezzi, P., & Zilioli, E. (2001). Detecting chlorophyll, Secchi disk depth and surface temperature in sub-alpine lake using Landsat imagery. The Science of the Total Environment, 268, 19–29.
Gilerson, A., Zhou, J., Hlaing, S., Ioannou, I., Schalles, J., Gross, B., & Ahmed, S. (2007). Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition. Optics Express, 15, 702–15721.
Gitelson, A., Garbuzov, G., Szilagyi, F., Mittenzwey, K., Karnieli, A., & Kaiser, A. (1993). Quantitative remote sensing methods for real-time monitoring of inland waters quality. International Journal of Remote Sensing, 14, 1269–1295.
Gitelson, A. A., Yacobi, Y. Z., Karnieli, A., & Kress, N. (1996). Reflectance spectra of polluted marine waters in Haifa Bay, Southeastern Mediterranean: features and application for remote estimation of chlorophyll concentration. Israel Journal of Earth Sciences, 45, 127–136.
Gitelson, A., Dallolmo, G., Moses, W., Rundquist, D., Barrow, T., Fisher, T., & Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment, 112(9), 3582–3593.
Gordon, H. R., & McCluney, W. R. (1975). Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics, 14, 413–416.
Gordon, H. R., Brown, J. W., Brown, O. B., Evans, R. H., & Smith, R. C. (1988). A semianalytic radiance model of ocean color. Journal of Geophysical Research, 93(D9), 10909–10924.
Hamilton, D. P., O’Brien, K. R., Burford, M. A., Brookes, J. D., & McBride, C. G. (2010). Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences, 72, 295–307.
Hamilton, D., Carey, C., Arvola, L., Arzberger, P., Brewer, C., Cole, J., & Brookes, J. (2015). A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models. Inland Waters, 5, 49–56.
Han, L., & Jordan, K. J. (2005). Estimating and mapping chlorophyll-a concentration in Pensacola Bay, Florida using Landsat ETM+ data. International Journal of Remote Sensing, 26, 5245–5254.
Hill, V. J., & Zimmerman, R. C. (2010). Estimates of primary production by remote sensing in the Arctic Ocean: assessment of accuracy with passive and active sensors. Deep-Sea Research Part I: Oceanographic Research Papers, 57, 1243–1254.
Hoellein, T. J., Bruesewitz, D. A., & Hamilton, D. P. (2012). Are geothermal streams important sites of nutrient uptake in an agricultural and urbanising landscape (Rotorua, New Zealand)? Freshwater Biology, 57(1), 116–128.
Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric Engineering & Remote Sensing, 72, 1179–1188.
Kallio, K., Koponen, S., & Pulliainen, J. (2003). Feasibility of airborne imaging spectrometry for lake monitoring—a case study of spatial chlorophyll a distribution in two meso-eutrophic lakes. International Journal of Remote Sensing, 24, 3771–3790.
Kloiber, S. M., Brezonik, P. L., & Bauer, M. E. (2002). Application of Landsat imagery to regional-scale assessments of lake clarity. Water Research, 36, 4330–4340.
Koponen, S. (2006). Remote sensing of water quality for Finnish lakes and coastal areas. Ph.D Thesis, Helsinki University of Technology: Finland.
Kostadinov, T. S., Siegel, D. A., & Maritorena, S. (2010). Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences, 7, 4295–4340.
Kotchenova, S. Y., Vermote, E. F., Levy, R., & Lyapustin, A. (2008). Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Applied Optics, 47(13), 2215–2226.
Koza, J. R. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4, 87–112.
Kuster, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography, 49, 2179–2189.
Kutser, T., Metsamaa, L., & Dekker, A. G. (2008). Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuarine, Coastal and Shelf Science, 78(4), 649–654.
Liley, J. B., & Forgan, B. W. (2009). Aerosol optical depth over Lauder, New Zealand. Geophysical Research Letters, 36(7), L07811.
Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota lakes. Photogrammetric Engineering and Remote Sensing, 49, 219–229.
Matthews, M. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32, 6855–6899.
Matthews, M. W., & Bernard, S. (2013). Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa. Biogeosciences, 10(12), 8139–8157.
Mobley, C. D. (1994). Light and water: radiative transfer in natural waters. San Diego: Academic Press.
Moisan, J. R., Moisan, T. A. H., & Linkswiler, M. A. (2011). An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. Journal of Geophysical Research, 116, 1–16.
Morel, A. (1974). Optical properties of pure water and pure seawater. In N. G. Jerlov & E. Steemann Nielsen (Eds.), Optical aspects of oceanography (pp. 1–24). London: Academic.
Oliver, R., & Ganf, G. (2000). Freshwater blooms. In M. P. B. W (Ed.), The ecology of cyanobacteria: their diversity in time and space. (p. 149–194). Netherlands: Kluwer Academic Publishers.
Oliver, R., Hamilton, D., Brookes, J., & Ganf, G. (2012). Physiology, blooms and prediction of planktonic Cyanobacteria. In B. A. W (Ed.), Ecology of cyanobacteria II. (p. 155–194). Netherlands: Springer.
Olmanson, L. G., Bauer, M. E., & Brezonik, P. L. (2008). A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment, 112, 4086–4097.
Pahlevan, N., Garrett, A. J., Gerace, A. D., & Schott, J. R. (2012). Integrating Landsat-71 imagery with physics-based models for quantitative mapping of coastal waters near river discharges. Photogrammetric Engineering & Remote Sensing, 78, 1163–1174.
Paul, W. J., Hamilton, D. P., Ostrovsky, I., Miller, S. D., Zhang, A., & Muraoka, K. (2012). Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand. Hydrobiologia, 698, 133–146.
Pope, R.M., & Fry, E.S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating Cavity Measurements, 8710–8723.
Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., Chu, D. A., Martins, J. V., & Holben, B. N. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62, 947–973.
Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324, 81–85.
Stephens, S., Gibbs, M., Hawes, I., Bowman, E., & Oldman, J. (2004). Ohau Channel Groynes. NIWA Client Report: HAM2004-047. Prepared for Environment Bay of Plenty.
Stramska, M., & Stramski, D. (2005). Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean. Applied Optics, 44, 1735–1747.
Stramski, D., Boss, E., Bogucki, D., & Voss, K. J. (2004). The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography, 61, 27–56.
Vant, W. N., & Davies-Colley, R. J. (1986). Relative importance of clarity determinants in lakes Okaro and Rotorua. New Zealand Journal of Marine and Freshwater Research, 20, 355–363.
Volten, H., Haan, J. D., & Hovenier, J. (1998). Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnology and Oceanography, 46, 1180–1197.
Webster, I. T., & Hutchinson, P. A. (1994). Effect of wind on the distribution of phytoplankton cells in lakes revisited. Limnology and Oceanography, 39, 365–373.
Wood, S. A, Briggs, L. R., Sprosen, J., G., Ruck, J. G., Wear, R. G., Holland, P. T., & Bloxham, M. (2006). Changes in concentrations of microcystins in rainbow trout, freshwater mussels, and cyanobacteria in Lakes Rotoiti and Rotoehu. Environmental Toxicology, 21(3), 205–222.
Yacobi, Y. Z., Gitelson, A., & Mayo, M. (1995). Remote sensing of chlorophyll in Lake Kinneret using high spectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. Journal of Plankton Research, 17, 2155–2173.
Zhang, Y., Yin, Y., Wang, M., & Liu, X. (2012). Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence. Optics Express, 20(11), 11882–11898.
Zhou, W., Wang, G., Sun, Z., Cao, W., Xu, Z., Hu, S., & Zhao, J. (2012). Variations in the optical scattering properties of phytoplankton cultures. Optics Express, 20(10), 11189–11206.
Acknowledgments
Funding was provided by the Bay of Plenty Regional Council (BOPRC) and the Ministry of Business, Innovation and Employment (contract UOWX0505). This work benefited from participation in the Global Lakes Ecological Observatory Network (GLEON). We thank Bay of Plenty Regional Council for providing the measured data for water quality variables, in particular Paul Scholes, Glenn Ellery and Gareth Evans. Dr Matt Pinkerton (National Institute of Water and Atmospheric Research, New Zealand) provided technical guidance. Dr Hirokazu Yamamoto (Advanced Industrial Science and Technology, Japan) gave valuable feedback on atmospheric correction calculations. Richard Lamont (UOW) compiled 6sv for Windows.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Allan, M.G., Hamilton, D.P., Hicks, B. et al. Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environ Monit Assess 187, 364 (2015). https://doi.org/10.1007/s10661-015-4585-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-015-4585-4