Abstract
Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán–Agua Brava–Las Haciendas estuarine–mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R 2 = 0.63); LAI versus SR (R 2 = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km2 of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition mangrove, mean estimated LAI values of 4.66 and 2.39 were calculated, respectively. Given that the former healthy group only represents 8% of the total mangrove area examined, it is concluded that this mangrove system, considered one of the most important of the Pacific coast of the Americas, is currently experiencing a considerable state of degradation. Furthermore, based on the results of this investigation it is suggested that this approach could provide resource managers and scientists alike with a very rapid and effective method for monitoring the state of remaining mangrove forests of the Mexican Pacific and, possibly, other areas of the tropics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alonso-Perez, F., Ruiz-Luna, A., Turner, J., Berlanga-Robles, C. A., & Mitchelson-Jacob, G. (2003). Land cover changes and impact of shrimp aquaculture on the landscape in the Ceuta coastal lagoon system, Sinaloa, Mexico. Ocean and Coastal Management, 46, 583–600. doi:10.1016/S0964-5691(03)00036-X.
Araujo, R. J., Jamarillo, J. C., & Snedaker, S. C. (1997). LAI and leaf size differences in two red mangrove forest types in South Florida. Bulletin of Marine Science, 60, 643–647.
Asner, G. P., Braswell, B. H., Schimel, D. S., & Wessman, C. A. (1998). Ecological research needs from multiangle remote sensing data. Remote Sensing of Environment, 63, 155–165. doi:10.1016/S0034-4257(97)00139-9.
Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191–205. doi:10.1046/j.1466-822X.2003.00026.x.
Beland, M., Goita, K., Bonn, F., & Pham, T. T. H. (2006). Assessment of land-cover changes related to shrimp aquaculture using remote sensing data: A case study in the Giao Thuy District, Vietnam. International Journal of Remote Sensing, 27, 1491–1510. doi:10.1080/01431160500406888.
Berlanga-Robles, C. A., & Ruiz-Luna, A. (2002). Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. Journal of Coastal Research, 18, 514–522.
Brondizio, E., Moran, E., Mausel, P., & Wu, Y. (1996). Land cover in the Amazon estuary: Linking of the thematic mapper with botanical and historical data. Photogrammetric Engineering and Remote Sensing, 62, 921–929.
Clough, B. F., Ong, J. E., & Gong, W. K. (1997). Estimating leaf area index and photosynthetic production in canopies of the mangrove Rhizophora apiculata. Marine Ecology Progress Series, 159, 285–292. doi:10.3354/meps159285.
Clough, B. F., Tan, D. T., Phuong, D. X., & Buu, D. C. (2000). Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam. Aquatic Botany, 66, 311–320. doi:10.1016/S0304-3770(99)00081-9.
Dahdouh-Guebas, F., Van Hiel, E., Chan, J. C.-W., Jayatissa, L. P., & Koedam, N. (2005). Qualitative distinction of congeneric and introgressive mangrove species in mixed patchy forest assemblages using high spatial resolution remotely sensed imagery (IKONOS). Systematics and Biodiversity, 2, 113–119. doi:10.1017/S1477200004001422.
Flores-Verdugo, F. J. (1986). Ecología de los manglares y perfil de comunidades en los sistemas lagunares de Agua Brava y Marismas Nacionales, Nayarit. Technical Report, Consejo Nacional de Ciencia y Tecnologia (Clave PCECBNA-022068. Mexico City, Mexico).
Flores-Verdugo, F. J., Gonzalez-Farias, F., Blanco-Correa, M., & Nunez-Pasten, A. (1997). The Teacapán–Agua Brava Marismas Nacionales mangrove ecosystem on the Pacific coast of Mexico. In B. Kjerfve, L. Drude, & E. H. S. Diop (Eds.), Mangrove ecosystem studies in Latin America and Africa (pp. 35–46). Paris: UNESCO.
Fuente, G., & Carrera, E. (2005). Cambio de Uso del Suelo en la Zona Costera del Estado de Sinaloa. Final Report to United States Forest Service (Grant No. 03-DG-11132762-157, Mexico: Ducks Unlimited de Mexico, A.C., Garza Garcia, N.L.).
Gao, J. (1998). A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data. International Journal of Remote Sensing, 19, 1887–1899. doi:10.1080/014311698215045.
Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19, 935–956. doi:10.1080/014311698215801.
Green, E. P., Mumby, P. J., Alaisdair, E. J., Clark, C. D., & Ellis, A. C. (1997). Estimating leaf area index of mangroves from satellite data. Aquatic Botany, 58, 11–19. doi:10.1016/S0304-3770(97)00013-2.
Hernández-Cornejo, R., Koedam, N., Ruiz Luna, A., Troell, M., & Dahdouh-Guebas, F. (2005). Remote sensing and ethnobotanical assessment of the mangrove forest changes in the Navachiste–San Ignacio–Macapule lagoon complex, Sinaloa, Mexico. Ecology and Society, 10, 16.
Hyer, E. J., & Goetz, S. J. (2004). Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: Assessments from a boreal forest site. Agricultural and Forest Meteorology, 122, 157–174. doi:10.1016/j.agrformet.2003.09.013.
Jensen, J. R. (2007). Remote sensing of the environment: An earth resource perspective. Upper Saddle River, NJ: Pearson Education, Inc.
Jensen, J. R., Lin, H., Yang, Y., Ramsey, E., Davis, B. A., & Thoemke, C. W. (1991). The measurement of mangrove characteristics in Southwest Florida using SPOT multispectral data. Geocarto International, 2, 13–21.
Kovacs, J. M. (1999). Assessing mangrove use at the local scale. Landscape and Urban Planning, 43, 201–208. doi:10.1016/S0169-2046(98)00106-6.
Kovacs, J. M. (2000). Perceptions of environmental change in a tropical coastal wetland. Land Degradation & Development, 11, 209–220. doi:10.1002/1099-145X(200005/06)11:3<209::AID-LDR378>3.0.CO;2-Y.
Kovacs, J. M., Flores-Verdugo, F., Wang, J., & Aspden, L. P. (2004). Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquatic Botany, 80, 13–22. doi:10.1016/j.aquabot.2004.06.001.
Kovacs, J. M., Wang, J., & Blanco-Correa, M. (2001). Mapping mangrove disturbances using multi-date Landsat TM imagery. Environmental Management, 27, 763–776. doi:10.1007/s002670010186.
Kovacs, J. M., Wang, J., & Flores-Verdugo, F. (2005). Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors. Estuarine, Coastal and Shelf Science, 62, 377–384. doi:10.1016/j.ecss.2004.09.027.
Lovelock, C. E., Feller, I. C., McKee, K. L., & Thompson, R. (2005). Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribbean Journal of Science, 41,456–464.
Lugo, A. E., & Snedaker, S. C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics, 5, 39–64. doi:10.1146/annurev.es.05.110174.000351.
Mather, P. M. (1987). Computer processing of remotely-sensed images: An introduction. Toronto: Wiley.
Muttitanon, W., & Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat TM data. International Journal of Remote Sensing, 26, 231–2323. doi:10.1080/01431160512331336610.
Pierce, L. L., & Running, S. W. (1988). Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology, 69, 1762–1767. doi:10.2307/1941154.
Ramsey, E., & Jensen, J. R. (1996). Remote sensing of mangrove wetlands: Relating canopy spectra to site-specific data. Photogrammetric Engineering and Remote Sensing, 62, 939–948.
Pool, D. J., Snedaker, S. C., & Lugo, A. E. (1977). Structure of mangrove forests in Florida, PuertoRico, Mexico and Costa Rica. Biotropica, 9, 195–212. doi:10.2307/2387881.
Sherman, R. E., Fahey, T. J., & Martinez, P. (2003). Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems (New York, N.Y.), 6, 384–398. doi:10.1007/s10021-002-0191-8.
Thu, P. M., & Populus, J. (2007). Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science, 71, 98–109. doi:10.1016/j.ecss.2006.08.007.
Tong, P. H. S., Auda, Y., Populus, J., Aizpuru, M., Al-Habshi, A., & Blasco, F. (2004). Assessment from space of mangrove evolution in the Mekong Delta, in relation to extensive shrimp farming. International Journal of Remote Sensing, 25, 4795–4812. doi:10.1080/01431160412331270858.
Valiela, I., Boen, J. L., & York, J. K. (2001). Mangrove forests: One of the world’s threatened major tropical environments. Bioscience, 51, 807–815. doi:10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2.
Wang, L., Sousa, W. P., & Gong, P. (2004a). Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25, 5655–5668. doi:10.1080/014311602331291215.
Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004b). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91, 432–440. doi:10.1016/j.rse.2004.04.005.
Webb, E. L., Evangelista, M. A., & Robinson, J. A. (2000). Digital land-use classification using space-shuttle-acquired orbital photographs: A quantitative comparison with Landsat TM imagery of a coastal environment, Chanthaburi, Thailand. Photogrammetric Engineering and Remote Sensing, 66, 1439–1449.
White, J. D., Running, S. W., Ramakrishna, N., Keane, R. E., & Ryan, K. C. (1997). Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems. Canadian Journal of Forest Research, 27, 1714–1727. doi:10.1139/cjfr-27-11-1714.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kovacs, J.M., King, J.M.L., Flores de Santiago, F. et al. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environ Monit Assess 157, 137–149 (2009). https://doi.org/10.1007/s10661-008-0523-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10661-008-0523-z