Monopoly or competition: strategic analysis of a retailing technology service provision | Electronic Commerce Research Skip to main content
Log in

Monopoly or competition: strategic analysis of a retailing technology service provision

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

To improve the consumer shopping experience and to remain competitive, an increasing number of retailers continue to increase their investment in technology services and actively seek help from technology service providers to transform and upgrade their retail business. Technology service providers deliver new technological solutions for retailers by providing professional retailing technology services (e.g., building omnichannel retailing modes). Considering this context, we seek to understand whether retailers expect to use technology services and service providers’ expectations of providing retailing services. In this paper, we build a two-tier supply chain with one upstream technology service provider and one downstream retailer (or two competitive retailers) to analyse the strategic choice of the retailer(s) and the service provider. We find that the retailer(s) can purchase a professional retailing technology from the technology service provider and that the service provider is willing to provide technology to two competing retailers, which can increase market demand and yield higher profits. Furthermore, we find the impact of the technological contribution level, retail competition intensity, the power structure, and the technology marketing effect on decision outcomes is significant. Therefore, retailers should consider the influence of these factors when service providers deliver a retailing technology service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Source: http://www.bizcent.com/.

  2. Source: https://www.deepblueai.com/.

  3. Notably, the technological contribution level indicates the level of the technological contributions made by the technology service provider to deliver the omnichannel service or chain store service in the supply chain. In our model, the technological contribution level is shown in formula (2).

  4. Technology marketing effect measures marginal demand with respect to the technology output level by technology marketing, which indicates the influence of the retailer’s technology marketing on demand.

References

  1. Priporas, C. V., Stylos, N., & Fotiadis, A. K. (2017). Generation Z consumers’ expectations of interactions in smart retailing: A future agenda. Computers in Human Behavior, 77, 374–381.

    Article  Google Scholar 

  2. Zhitomirsky-Geffet, M., & Blau, M. (2016). Cross-generational analysis of predictive factors of addictive behavior in smartphone usage. Computers in Human Behavior, 64, 682–693.

    Article  Google Scholar 

  3. Halilovic, S., & Cicic, M. (2013). Antecedents of information systems user behavior-extended expectation-confirmation model. Behaviour & Information Technology, 32(4), 359–370.

    Article  Google Scholar 

  4. Pantano, E., & Viassone, M. (2015). Engaging consumers on new integrated multichannel retail settings: Challenges for retailers. Journal of Retailing and Consumer Service, 25, 106–114.

    Article  Google Scholar 

  5. Pantano, E., & Priporas, C. V. (2016). The effect of mobile retailing on consumers’ purchasing experiences: A dynamic perspective. Computers in Human Behavior, 61, 548–555.

    Article  Google Scholar 

  6. Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404–414.

    Article  Google Scholar 

  7. Liu, J., Kauffman, R. J., & Ma, D. (2015). Competition, cooperation, and regulation: Understanding the evolution of the mobile payments technology ecosystem. Electronic Commerce Research and Applications, 14(5), 372–391.

    Article  Google Scholar 

  8. Hedman, J., & Henningsson, S. (2015). The new normal: Market cooperation in the mobile payments ecosystem. Electronic Commerce Research and Applications, 14(5), 305–318.

    Article  Google Scholar 

  9. Evanschitzky, H., Iyer, G. R., Pillai, K. G., Kenning, P., & Schütte, R. (2015). Consumer trial, continuous use, and economic benefits of a retail service innovation: The case of the personal shopping assistant. Journal of Product Innovation Management, 32(3), 459–475.

    Article  Google Scholar 

  10. Roy, S. K., Balaji, M. S., Sadeque, S., Nguyen, B., & Melewar, T. C. (2017). Constituents and consequences of smart customer experience in retailing. Technological Forecasting and Social Change, 124, 257–270.

    Article  Google Scholar 

  11. Balaji, M. S., & Roy, S. K. (2017). Value co-creation with Internet of things technology in the retail industry. Journal of Marketing Management, 33(1–2), 7–31.

    Article  Google Scholar 

  12. Huang, T. L. (2019). Psychological mechanisms of brand love and information technology identity in virtual retail environments. Journal of Retailing and Consumer Service, 47, 251–264.

    Article  Google Scholar 

  13. Pantano, E., & Vannucci, V. (2019). Who is innovating? An exploratory research of digital technologies diffusion in retail industry. Journal of Retailing and Consumer Service, 49, 297–304.

    Article  Google Scholar 

  14. Pantano, E., & Timmermans, H. (2014). What is smart for retailing? Procedia Environmental Sciences, 22, 101–107.

    Article  Google Scholar 

  15. Varadarajan, R., Srinivasan, R., Vadakkepatt, G. G., Yadav, M. S., Pavlou, P. A., Krishnamurthy, S., et al. (2010). Interactive technologies and retailing strategy: A review, conceptual framework and future research directions. Journal of Interactive Marketing, 24(2), 96–110.

    Article  Google Scholar 

  16. Chen, J. S., & Tsou, H. T. (2012). Performance effects of IT capability, service process innovation, and the mediating role of customer service. Journal of Engineering and Technology Management, 29(1), 71–94.

    Article  Google Scholar 

  17. Handley, S. M., de Jong, J., & Benton, W. C., Jr. (2019). How service provider dependence perceptions moderate the power-opportunism relationship with professional service. Production and Operations Management, 28(7), 1692–1715.

    Article  Google Scholar 

  18. Willems, K., Smolders, A., Brengman, M., Luyten, K., & Schöning, J. (2017). The path-to-purchase is paved with digital opportunities: An inventory of shopper-oriented retail technologies. Technological Forecasting and Social Change, 124, 228–242.

    Article  Google Scholar 

  19. Pantano, E., & Di Pietro, L. (2012). Understanding consumer’s acceptance of technology-based innovations in retailing. Journal of Technology Management & Innovation, 7(4), 1–19.

    Article  Google Scholar 

  20. Zhu, Z., Nakata, C., Sivakumar, K., & Grewal, D. (2013). Fix it or leave it? Customer recovery from self-service technology failures. Journal of Retailing, 89(1), 15–29.

    Article  Google Scholar 

  21. Pantano, E. (2014). Innovation management in retailing: From consumer perspective to corporate strategy. Journal of Retailing and Consumer Service, 21(5), 825–826.

    Article  Google Scholar 

  22. Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers׳ and retailers׳ point of view. Journal of Retailing and Consumer Service, 21(5), 836–843.

    Article  Google Scholar 

  23. Bharadwaj, N., Naylor, R. W., & Ter Hofstede, F. (2009). Consumer response to and choice of customized versus standardized systems. International Journal of Research in Marketing, 26(3), 216–227.

    Article  Google Scholar 

  24. Newsom, M. K., Collier, D. A., & Olsen, E. O. (2009). Using “biztainment” to gain competitive advantage. Business Horizons, 52(2), 167–176.

    Article  Google Scholar 

  25. Sorescu, A., Frambach, R. T., Singh, J., Rangaswamy, A., & Bridges, C. (2011). Innovations in retail business models. Journal of Retailing, 87, S3–S16.

    Article  Google Scholar 

  26. Yoo, W. S., & Lee, E. (2011). Internet channel entry: A strategic analysis of mixed channel structures. Marketing Science, 30(1), 29–41.

    Article  Google Scholar 

  27. Zhuang, H., Leszczyc, P. T. P., & Lin, Y. (2018). Why is price dispersion higher online than offline? The impact of retailer type and shopping risk on price dispersion. Journal of Retailing, 94(2), 136–153.

    Article  Google Scholar 

  28. Tsay, A. A., & Agrawal, N. (2004). Channel conflict and coordination in the e-commerce age. Production and Operations Management, 13(1), 93–110.

    Article  Google Scholar 

  29. Geng, Q., & Mallik, S. (2007). Inventory competition and allocation in a multi-channel distribution system. European Journal of Operational Research, 182(2), 704–729.

    Article  Google Scholar 

  30. Cai, G. G. (2010). Channel selection and coordination in dual-channel supply chains. Journal of Retailing, 86(1), 22–36.

    Article  Google Scholar 

  31. Liu, Q., & Zhang, D. (2013). Dynamic pricing competition with strategic customers under vertical product differentiation. Management Science, 59(1), 84–101.

    Article  Google Scholar 

  32. Wu, L., Deng, S., & Jiang, X. (2018). Sampling and pricing strategy under competition. Omega-The International Journal of Management Science, 80, 192–208.

    Article  Google Scholar 

  33. Chen, P., Zhao, R., Yan, Y., & Li, X. (2019). Promotional Pricing and Online Business Model Choice in the Presence of Retail Competition. Omega-The International Journal of Management Science. https://doi.org/10.1016/j.omega.2019.07.001.

    Article  Google Scholar 

  34. Chen, L. G., Ding, D., & Ou, J. (2014). Power structure and profitability in assembly supply chains. Production and Operations Management, 23(9), 1599–1616.

    Article  Google Scholar 

  35. Luo, Z., Chen, X., & Kai, M. (2018). The effect of customer value and power structure on retail supply chain product choice and pricing decisions. Omega-The International Journal of Management Science, 77, 115–126.

    Article  Google Scholar 

  36. Perrons, R. K. (2009). The open kimono: How Intel balances trust and power to maintain platform leadership. Research Policy, 38(8), 1300–1312.

    Article  Google Scholar 

  37. Gassmann, O., Enkel, E., & Chesbrough, H. (2010). The future of open innovation. R&d Management, 40(3), 213–221.

    Article  Google Scholar 

  38. Ge, Z., Hu, Q., & Xia, Y. (2014). Firms’ R&D cooperation behavior in a supply chain. Production and Operations Management, 23(4), 599–609.

    Article  Google Scholar 

  39. Yenipazarli, A. (2017). To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain. European Journal of Operational Research, 260(2), 571–587.

    Article  Google Scholar 

  40. Chen, X., Wang, X., & Zhou, M. (2019). Firms’ green R&D cooperation behaviour in a supply chain: Technological spillover, power and coordination. International Journal of Production Economics, 218, 118–134.

    Article  Google Scholar 

  41. Zhu, W., & He, Y. (2017). Green product design in supply chains under competition. European Journal of Operational Research, 258(1), 165–180.

    Article  Google Scholar 

  42. D’Aspremont, C., & Jacquemin, A. (1988). Cooperative and noncooperative R & D in duopoly with spillovers. The American Economic Review, 78(5), 1133–1137.

    Google Scholar 

  43. Chen, R. R., & Roma, P. (2011). Group buying of competing retailers. Production and Operations Management, 20(2), 181–197.

    Article  Google Scholar 

  44. Tian, L., Vakharia, A. J., Tan, Y., & Xu, Y. (2018). Marketplace, Reseller, or Hybrid: Strategic Analysis of an Emerging E-Commerce Model. Production and Operations Management, 27(8), 1595–1610.

    Article  Google Scholar 

  45. Petrescu, R. V. (2019). Face Recognition as a Biometric Application. Journal of Mechatronics and Robotics, 3, 237–257.

    Article  Google Scholar 

  46. Liu, B., Cai, G., & Tsay, A. A. (2014). Advertising in asymmetric competing supply chains. Production and Operations Management, 23(11), 1845–1858.

    Article  Google Scholar 

  47. Gupta, S. (2008). Channel structure with knowledge spillovers. Marketing Science, 27(2), 247–261.

    Article  Google Scholar 

  48. Roy, S. K., Balaji, M. S., Quazi, A., & Quaddus, M. (2018). Predictors of customer acceptance of and resistance to smart technologies in the retail sector. Journal of Retailing and Consumer Service, 42, 147–160.

    Article  Google Scholar 

  49. Ma, P., Wang, H., & Shang, J. (2013). Supply chain channel strategies with quality and marketing effort-dependent demand. International Journal of Production Economics, 144(2), 572–581.

    Article  Google Scholar 

  50. Song, J., Li, F., Wu, D. D., Liang, L., & Dolgui, A. (2017). Supply chain coordination through integration of innovation effort and advertising support. Applied Mathematical Modelling, 49, 108–123.

    Article  Google Scholar 

  51. Rosenbaum, M. S., & Wong, I. A. (2015). If you install it, will they use it? Understanding why hospitality customers take “technological pauses” from self-service technology. Journal of Business Research, 68(9), 1862–1868.

    Article  Google Scholar 

  52. Kwee-Meier, S. T., Bützler, J. E., & Schlick, C. (2016). Development and validation of a technology acceptance model for safety-enhancing, wearable locating systems. Behaviour & Information Technology, 35(5), 394–409.

    Article  Google Scholar 

  53. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

    Article  Google Scholar 

  54. Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In Handbook of the Fundamentals of Financial Decision Making, Part I: 99–127.

Download references

Acknowledgements

First, the authors would like to thank the anonymous reviewers and the editors for their constructive comments on an earlier version of the paper. Second, the research described in this paper was significantly supported by the Postdoctoral Research Foundation of China (No. 2019M652682), the Fundamental Research Funds for the Central Universities (No. CCNU20QN016), and the Hubei Province Postdoctoral Science and Technology Activity Project (No. 2018Z37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenglong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

According to the equilibrium solutions of Lemmas 1 and 2, we use derivation rule to obtain the results of proposition 1. We omit the straightforward algebraic steps here.\(\square\)

Proof of Proposition 2

  1. (1)

    PBC mode

According to Lemma 2, we have

$$\begin{aligned} \frac{{\partial w^{PBC} }}{\partial \eta } & = \frac{{\alpha \gamma \beta^{2} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }} > 0,\;\frac{{\partial \theta^{PBC} }}{\partial \eta } = \frac{2\alpha \gamma \beta }{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }} > 0, \\ \frac{{\partial Q_{i}^{PBC} }}{\partial \eta } & = \frac{{2\alpha \gamma^{2} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }} > 0,\;\frac{{\partial Q_{j ,j \ne i}^{PBC} }}{\partial \eta } > 0,\;\frac{{\partial \varPi_{S} (PBC )}}{\partial \eta } = \frac{{2\alpha^{2} \gamma^{2} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }} > 0. \\ \end{aligned}$$

Further, we obtain \(\frac{{\partial p_{i}^{PBC} }}{\partial \eta } = \frac{{\partial p_{j ,j \ne i}^{PBC} }}{\partial \eta } = \frac{{2\alpha \gamma (\beta^{2} - \gamma )}}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }} = \frac{{2\alpha \gamma^{2} (G - 1)}}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }}\), and \(G = \frac{{\beta^{2} }}{\gamma }\). Thus, when \(0 < G < 1\), we have \(\frac{{\partial p_{i}^{PBC} }}{\partial \eta } = \frac{{\partial p_{j ,j \ne i}^{PBC} }}{\partial \eta } < 0\); when \(1 < G < \frac{2(2 + \eta )}{1 + \eta }\), we have \(\frac{{\partial p_{i}^{PBC} }}{\partial \eta } = \frac{{\partial p_{j ,j \ne i}^{PBC} }}{\partial \eta } > 0\).

  1. (2)

    PNC mode

Under the PNC mode, we have \(\frac{{\partial w^{PNC} }}{\partial \eta } = \frac{{2\alpha \gamma \beta^{2} }}{{\left[ {4\gamma - A\beta^{2} } \right]^{2} }}\frac{\partial A}{\partial \eta }\), and \(\frac{\partial A}{\partial \eta } = \frac{{32 + 144\eta + 232\eta^{2} + 160\eta^{3} + 44\eta^{4} }}{{\left[ {4(1 + \eta )(2 + 4\eta + \eta^{2} )} \right]^{2} }} > 0\), we let \(\frac{\partial A}{\partial \eta } = A_{1}\), obtain \(\frac{{\partial w^{PNC} }}{\partial \eta } = \frac{{2A_{1} \alpha \gamma \beta^{2} }}{{\left[ {4\gamma - A\beta^{2} } \right]^{2} }} > 0\), and \(\frac{{\partial \varPi_{S} (PNC )}}{\partial \eta } = \frac{{4A_{1} \alpha^{2} \gamma^{2} }}{{\left[ {4\gamma - A\beta^{2} } \right]^{2} }} > 0\), \(\frac{{\partial \theta^{PNC} }}{\partial \eta } = \frac{{4A_{1} \alpha \gamma \beta }}{{\left[ {4\gamma - A\beta^{2} } \right]^{2} }} > 0\), \(\frac{{\partial Q_{i}^{PNC} }}{\partial \eta } > 0\), \(\frac{{\partial Q_{j ,j \ne i}^{PNC} }}{\partial \eta } > 0\).

Further, we have \(\frac{{\partial p_{i}^{PNC} }}{\partial \eta } = \frac{{A_{2} \alpha \gamma^{2} \left( {G - \frac{{8 + 16\eta + 12\eta^{2} }}{{A_{2} }}} \right)}}{{\left[ {(2 + 4\eta + \eta^{2} )(4\gamma - A\beta^{2} )} \right]^{2} }}\), and \(A_{2} = (6 + 11\eta + 2\eta^{2} )(2 + 4\eta + \eta^{2} )A_{1} + (2 + 4\eta + 3\eta^{2} )A\). Thus, when \(0 < G < \frac{{8 + 16\eta + 12\eta^{2} }}{{A_{2} }}\), we obtain \(\frac{{\partial p_{i}^{PNC} }}{\partial \eta } < 0\); when \(\frac{{8 + 16\eta + 12\eta^{2} }}{{A_{2} }} < G < \frac{4}{A}\), we obtain \(\frac{{\partial p_{i}^{PNC} }}{\partial \eta } > 0\).

Similarly, we have

$$\frac{{\partial p_{j .j \ne i}^{PNC} }}{\partial \eta } = \frac{{A_{3} \alpha \gamma^{2} \left( {G - \frac{{32 + 160\eta + 256\eta^{2} + 160\eta^{3} + 40\eta^{4} }}{{A_{3} }}} \right)}}{{\left[ {2(1 + \eta )(2 + 4\eta + \eta^{2} )(4\gamma - A\beta^{2} )} \right]^{2} }}$$
(22)

\(A_{3} = (12 + 34\eta + 25\eta^{2} + 4\eta^{3} )(4 + 12\eta + 10\eta^{2} + 2\eta^{3} )A_{1} + (8 + 40\eta + 64\eta^{2} + 40\eta^{3} + 10\eta^{4} )A\).

Thus, when \(0 < G < \frac{{32 + 160\eta + 256\eta^{2} + 160\eta^{3} + 40\eta^{4} }}{{A_{3} }}\), we obtain \(\frac{{\partial p_{j .j \ne i}^{PNC} }}{\partial \eta } < 0\); when \(\frac{{32 + 160\eta + 256\eta^{2} + 160\eta^{3} + 40\eta^{4} }}{{A_{3} }} < G < \frac{4}{A}\), we obtain \(\frac{{\partial p_{j .j \ne i}^{PNC} }}{\partial \eta } > 0\). In summary, when \(\hbox{max} G < G < \frac{2(2 + \eta )}{1 + \eta }\),we have \(\frac{{\partial p_{i}^{PBC} }}{\partial \eta } = \frac{{\partial p_{j ,j \ne i}^{PBC} }}{\partial \eta } > 0\), \(\frac{{\partial p_{i}^{PNC} }}{\partial \eta } > 0\), \(\frac{{\partial p_{j ,j \ne i}^{PNC} }}{\partial \eta } > 0\); when \(0 < G < \hbox{min} G_{1}\), we have \(\frac{{\partial p_{i}^{PBC} }}{\partial \eta } = \frac{{\partial p_{j ,j \ne i}^{PBC} }}{\partial \eta } < 0\), \(\frac{{\partial p_{i}^{PNC} }}{\partial \eta } < 0\), \(\frac{{\partial p_{j ,j \ne i}^{PNC} }}{\partial \eta } < 0\), \(\hbox{max} G_{1} = \hbox{max} \left\{ {1 ,\frac{{8 + 16\eta + 12\eta^{2} }}{{A_{2} }} ,\frac{{32 + 160\eta + 256\eta^{2} + 160\eta^{3} + 40\eta^{4} }}{{A_{3} }}} \right\}\), \(\hbox{min} G_{1} = \hbox{min} \left\{ {1 ,\frac{{8 + 16\eta + 12\eta^{2} }}{{A_{2} }} ,\frac{{32 + 160\eta + 256\eta^{2} + 160\eta^{3} + 40\eta^{4} }}{{A_{3} }}} \right\}\), \(A_{1} = \frac{{32 + 144\eta + 232\eta^{2} + 160\eta^{3} + 44\eta^{4} }}{{\left[ {4(1 + \eta )(2 + 4\eta + \eta^{2} )} \right]^{2} }}\), \(A_{2} = (6 + 11\eta + 2\eta^{2} )(2 + 4\eta + \eta^{2} )A_{1} + (2 + 4\eta + 3\eta^{2} )A\), \(A_{3} = (12 + 34\eta + 25\eta^{2} + 4\eta^{3} )(4 + 12\eta + 10\eta^{2} + 2\eta^{3} )A_{1} + (8 + 40\eta + 64\eta^{2} + 40\eta^{3} + 10\eta^{4} )A\). \(\square\)

Proof of Proposition 3

  1. (1)

    PBC mode


According to Lemma 2, we have \(\frac{{\partial \varPi_{S} (PBC )}}{\partial \eta } = \frac{{2\alpha^{2} \gamma^{2} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} }} > 0\), \(\frac{{\partial \varPi_{{R_{i} }} (PBC)}}{\partial \eta } = \frac{{\partial \varPi_{{R_{j,j \ne i} }} (PBC)}}{\partial \eta } = \frac{{\alpha^{2} \gamma^{3} (1 + \eta )\left( {G - \frac{2\eta }{1 + \eta }} \right)}}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{3} }}\). Thus, when \(0 < G < \frac{2\eta }{1 + \eta }\), we obtain \(\frac{{\partial \varPi_{{R_{i} }} (PBC)}}{\partial \eta } = \frac{{\partial \varPi_{{R_{j,j \ne i} }} (PBC)}}{\partial \eta } < 0\); when \(\frac{2\eta }{1 + \eta } < G < \frac{2(2 + \eta )}{1 + \eta }\), we obtain \(\frac{{\partial \varPi_{{R_{i} }} (PBC)}}{\partial \eta } = \frac{{\partial \varPi_{{R_{j,j \ne i} }} (PBC)}}{\partial \eta } > 0\).

  1. (2)

    PNC Mode


Under the PNC mode, we have \(\frac{\partial A}{\partial \eta } = \frac{{32 + 144\eta + 232\eta^{2} + 160\eta^{3} + 44\eta^{4} }}{{\left[ {4(1 + \eta )(2 + 4\eta + \eta^{2} )} \right]^{2} }} > 0\), \(\frac{\partial A}{\partial \eta } = A_{1}\), thus \(\frac{{\partial \varPi_{S} (PNC )}}{\partial \eta } = \frac{{4A_{1} \alpha^{2} \gamma^{2} }}{{\left[ {4\gamma - A\beta^{2} } \right]^{2} }} > 0\). Further, we have

$$\frac{{\partial \varPi_{{R_{i} }} (PNC)}}{\partial \eta } = \frac{{\alpha^{2} \gamma^{3} (4\gamma - A\beta^{2} )(AA_{4} + A_{5} )\left( {G - \frac{{4A_{8} }}{{AA_{8} + A_{9} }}} \right)}}{{\left[ {2(1 + \eta )\left( {2 + 4\eta + \eta^{2} } \right)^{2} \left( {4\gamma - A\beta^{2} } \right)^{2} } \right]^{2} }}$$
(23)
$$\begin{aligned} A_{4} & = \left[ \begin{aligned} (8 + 40\eta + 70\eta^{2} + 48\eta^{3} + 9\eta^{4} )(40 + 144\eta + 168\eta^{2} + 72\eta^{3} + 10\eta^{4} ) - \hfill \\ (8 + 40\eta + 72\eta^{2} + 56\eta^{3} + 18\eta^{4} + 2\eta^{5} )(40 + 140\eta + 144\eta^{2} + 36\eta^{3} ) \hfill \\ \end{aligned} \right] > 0, \\ A_{5} & = 2A_{1} (8 + 40\eta + 72\eta^{2} + 56\eta^{3} + 18\eta^{4} + 2\eta^{5} )(8 + 40\eta + 70\eta^{2} + 48\eta^{3} + 9\eta^{4} ) > 0. \\ \end{aligned}$$

Thus, when \(0 < G < \frac{{4A_{4} }}{{AA_{4} + A_{5} }}\), we obtain \(\frac{{\partial \varPi_{{R_{i} }} (PNC)}}{\partial \eta } < 0\); when \(\frac{{4A_{4} }}{{AA_{4} + A_{5} }} < G < \frac{4}{A}\), we obtain \(\frac{{\partial \varPi_{{R_{i} }} (PNC)}}{\partial \eta } > 0\).

Similarly, we have

$$\frac{{\partial \varPi_{{R_{j,j \ne i} }} (PNC)}}{\partial \eta } = \frac{{\alpha^{2} \gamma^{3} (4\gamma - A\beta^{2} )\left[ {A(A_{7} + A_{8} - A_{6} ) + A_{9} } \right]\left[ {G - \frac{{4(A_{7} + A_{8} - A_{6} )}}{{A(A_{7} + A_{8} - A_{6} ) + A_{9} }}} \right]^{{}} }}{{\left[ {4(1 + \eta )^{2} \left( {2 + 4\eta + \eta^{2} } \right)^{2} \left( {4\gamma - A\beta^{2} } \right)^{2} } \right]^{2} }}$$
(24)
$$\begin{aligned} A_{6} & = (192 + 1072\eta + 2272\eta^{2} + 2232\eta^{3} + 990\eta^{4} + 150\eta^{5} )(8 + 40\eta + 72\eta^{2} + 56\eta^{3} + 18\eta^{4} + 2\eta^{5} ), \\ A_{7} & = 2(16 + 96\eta + 220\eta^{2} + 232\eta^{3} + 105\eta^{4} + 18\eta^{5} )(8 + 40\eta + 72\eta^{2} + 56\eta^{3} + 18\eta^{4} + 2\eta^{5} ), \\ A_{8} & = 2(1 + \eta )(16 + 96\eta + 220\eta^{2} + 232\eta^{3} + 105\eta^{4} + 18\eta^{5} )(40 + 144\eta + 168\eta^{2} + 72\eta^{3} + 10\eta^{4} ), \\ A_{9} & = 2A_{1} (1 + \eta )(16 + 96\eta + 220\eta^{2} + 232\eta^{3} + 105\eta^{4} + 18\eta^{5} )(16 + 80\eta + 144\eta^{2} + 112\eta^{3} + 36\eta^{4} + 4\eta^{5} ). \\ \end{aligned}$$

Thus, when \(0 < G < \frac{{4(A_{7} + A_{8} - A_{6} )}}{{A(A_{7} + A_{8} - A_{6} ) + A_{9} }}\), we obtain \(\frac{{\partial \varPi_{{R_{j,j \ne i} }} (PNC)}}{\partial \eta } < 0\); when \(\frac{{4(A_{7} + A_{8} - A_{6} )}}{{A(A_{7} + A_{8} - A_{6} ) + A_{9} }} < G < \frac{4}{A}\), we obtain \(\frac{{\partial \varPi_{{R_{j,j \ne i} }} (PNC)}}{\partial \eta } > 0\). In summary, when \(0 < G < \hbox{min} G_{2}\), we have \(\frac{{\partial \varPi_{{R_{i} }}^{{}} (PBC)}}{\partial \eta } = \frac{{\partial \varPi_{{R_{j,j \ne i} }}^{{}} (PBC)}}{\partial \eta } < 0\), \(\frac{{\partial \varPi_{{R_{i} }}^{{}} (PNC)}}{\partial \eta } < 0\), \(\frac{{\partial \varPi_{{R_{j,j \ne i} }}^{{}} (PNC)}}{\partial \eta } < 0\); when \(\hbox{max} G_{2} < G < \frac{2(2 + \eta )}{1 + \eta }\), we have \(\frac{{\partial \varPi_{{R_{i} }}^{{}} (PBC)}}{\partial \eta } = \frac{{\partial \varPi_{{R_{j,j \ne i} }}^{{}} (PBC)}}{\partial \eta } > 0\), \(\frac{{\partial \varPi_{{R_{i} }}^{{}} (PNC)}}{\partial \eta } > 0\), \(\frac{{\partial \varPi_{{R_{j,j \ne i} }}^{{}} (PNC)}}{\partial \eta } > 0\), \(\hbox{min} G_{2} = \hbox{min} \left\{ {\frac{2\eta }{1 + \eta },\frac{{4A_{4} }}{{AA_{4} + A_{5} }},\frac{{4(A_{7} + A_{8} - A_{6} )}}{{A(A_{7} + A_{8} - A_{6} ) + A_{9} }}} \right\}\), \(\hbox{max} G_{2} = \hbox{max} \left\{ {\frac{2\eta }{1 + \eta },\frac{{4A_{4} }}{{AA_{4} + A_{5} }},\frac{{4(A_{7} + A_{8} - A_{6} )}}{{A(A_{7} + A_{8} - A_{6} ) + A_{9} }}} \right\}\).\(\square\)

Proof of Proposition 4

  1. (1)

    Comparison of \(w^{C}\) and \(w^{M}\)

According to Lemmas 1 and 2, under the PBC mode, we have

$$w^{PBC} - w^{M} = \frac{\alpha \gamma (2 + \eta )}{{2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )}} - \frac{2\alpha \gamma }{{4\gamma - \beta^{2} }} = \frac{{\alpha \gamma \eta \beta^{2} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} (4\gamma - \beta^{2} )}} > 0$$
(25)

Under the PNC mode, we have

$$w^{PNC} - w^{M} = \frac{2\alpha \gamma }{{4\gamma - A\beta^{2} }} - \frac{2\alpha \gamma }{{4\gamma - \beta^{2} }} = \frac{{2\alpha \gamma \beta^{2} (A - 1)}}{{(4\gamma - A\beta^{2} )(4\gamma - \beta^{2} )}}$$
(26)

Since \(A = \frac{{8 + 28\eta + 29\eta^{2} + 8\eta^{3} }}{{4(1 + \eta )\left( {2 + 4\eta + \eta^{2} } \right)^{{}} }}\), we have \(A - 1 > 0\), thus \(w^{PNC} - w^{M} > 0\). Further, we obtain

$$w^{PBC} - w^{PNC} = \frac{{\alpha \gamma \left[ {4\gamma + \beta^{2} [2(1 + \eta ) - A(2 + \eta )]} \right]^{{}} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} (4\gamma - \beta^{2} )}}$$
(27)

Since \(2(1 + \eta ) - A(2 + \eta ) > 0\), we have \(w^{PBC} - w^{PNC} > 0\), that is \(w^{PBC} > w^{PNC}\).

  1. (2)

    Comparison of \(\theta^{C}\) and \(\theta^{M}\)

Under the PBC mode, we have

$$\theta^{PBC} - \theta^{M} = \frac{\alpha \beta (1 + \eta )}{{2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )}} - \frac{\alpha \beta }{{4\gamma - \beta^{2} }} = \frac{2\alpha \gamma \eta \beta }{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} (4\gamma - \beta^{2} )}} > 0$$
(28)

Under the PNC mode, we have

$$\theta^{PNC} - \theta^{M} = \frac{A\alpha \beta }{{4\gamma - A\beta^{2} }} - \frac{\alpha \beta }{{4\gamma - \beta^{2} }} = \frac{4\alpha \gamma \beta (A - 1)}{{(4\gamma - A\beta^{2} )(4\gamma - \beta^{2} )}} > 0$$
(29)

Further, we obtain

$$\theta^{PBC} - \theta^{PNC} = \frac{\alpha \gamma \beta [4(1 + \eta ) - 2A(2 + \eta )]}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} (4\gamma - \beta^{2} )}}$$
(30)

Since \(4(1 + \eta ) - 2A(2 + \eta ) > 0\), we have \(\theta^{PBC} - \theta^{PNC} > 0\), that is \(\theta^{PBC} > \theta^{PNC}\).

  1. (3)

    Comparison of \(Q^{C}\) and \(Q^{M}\)

According to Lemmas 1 and 2, under the PBC mode, we have

$$Q^{PBC} - Q^{M} = \frac{\alpha \gamma (1 + \eta )}{{2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )}} - \frac{\alpha \gamma }{{4\gamma - \beta^{2} }} = \frac{{2\alpha \gamma^{2} \eta }}{{\left( {4\gamma - \beta^{2} } \right)\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} }} > 0$$
(31)

By the same calculation, we obtain \(Q^{PNC}\) is greater than \(Q^{M}\) under the PNC mode.

  1. (4)

    Comparison of \(p_{i}^{C}\) and \(P^{M}\), \(p_{j ,j \ne i}^{C}\) and \(P^{M}\)

Under the PBC mode, we have

$$p_{i}^{PBC} - p_{{}}^{M} = p_{j ,j \ne i}^{PBC} - p_{{}}^{M} = \frac{{2\alpha \gamma^{2} \eta \left( {\frac{{\beta^{2} }}{\gamma } - 1} \right)}}{{\left( {4\gamma - \beta^{2} } \right)\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} }} = \frac{{2\alpha \gamma^{2} \eta \left( {G - 1} \right)}}{{\left( {4\gamma - \beta^{2} } \right)\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} }}$$
(32)

Thus, when \(0 < G < 1\), we obtain \(p_{i}^{PBC} = p_{j ,j \ne i}^{PBC} < P^{M}\); when \(1 < G < \frac{2(2 + \eta )}{1 + \eta }\), we obtain \(p_{i}^{PBC} = p_{j ,j \ne i}^{PBC} > P^{M}\).

Under the PNC mode, we have

$$p_{i}^{PNC} - p_{{}}^{M} = \frac{{A_{10} \alpha \gamma^{2} \left( {\frac{{\beta^{2} }}{\gamma } - \frac{{4(\eta + \eta^{2} )}}{{A_{10} }}} \right)}}{{\left( {4\gamma - \beta^{2} } \right)\left( {4\gamma - A\beta^{2} } \right)\left( {2 + 4\eta + \eta^{2} } \right)}},\;p_{j ,j \ne i}^{PNC} - p_{{}}^{M} = \frac{{A_{11} \alpha \gamma^{2} \left( {\frac{{\beta^{2} }}{\gamma } - \frac{{4(2\eta + 5\eta^{2} + 2\eta^{3} )}}{{A_{11} }}} \right)}}{{2(1 + \eta )\left( {2 + 4\eta + \eta^{2} } \right)^{{}} \left( {4\gamma - \beta^{2} } \right)\left( {4\gamma - A\beta^{2} } \right)}}$$
(33)

\(A_{10} = (A - 1)(6 + 11\eta + 2\eta^{2} ) + A(\eta + \eta^{2} )\). Thus, when \(0 < G < \frac{{4(\eta + \eta^{2} )}}{{A_{10} }}\), we obtain \(p_{i}^{PNC} < P^{M}\); when \(\frac{{4(\eta + \eta^{2} )}}{{A_{10} }} < G < \frac{4}{A}\), we obtain \(p_{i}^{PNC} > P^{M}\).

\(A_{11} = (A - 1)(12 + 34\eta + 25\eta^{2} + 4\eta^{3} ) + A(2\eta + 5\eta^{2} + 2\eta^{3} )\). Thus, when \(0 < G < \frac{{4(2\eta + 5\eta^{2} + 2\eta^{3} )}}{{A_{11} }}\), we have \(p_{j ,j \ne i}^{PNC} < P^{M}\); when \(\frac{{4(2\eta + 5\eta^{2} + 2\eta^{3} )}}{{A_{11} }} < G < \frac{4}{A}\), we have \(p_{j ,j \ne i}^{PNC} > P^{M}\).

  1. (5)

    Comparison of \(p_{i}^{PBC}\) and \(p_{j ,j \ne i}^{PBC}\), \(p_{i}^{PNC}\) and \(p_{j ,j \ne i}^{PNC}\)

    $$p_{i}^{PBC} - p_{i}^{PNC} = \frac{{A_{12} \alpha \gamma^{2} \left( {\frac{{\beta^{2} }}{\gamma } - \frac{{2\eta^{2} }}{{A_{6} }}} \right)}}{{\left[ {2\gamma ( 2+ \eta )- \beta^{2} ( 1+ \eta )} \right]\left( {2 + 4\eta + \eta^{2} } \right)^{{}} \left( {4\gamma - A\beta^{2} } \right)}}$$
    (34)

\(A_{12} = (6 + 17\eta + 13\eta^{2} + 2\eta^{3} ) - A(6 + 14\eta + 7\eta^{2} + \eta^{3} ) > 0\). Thus, when \(0 < G < \frac{{2\eta^{2} }}{{A_{12} }}\), we have \(p_{i}^{PBC} < p_{i}^{PNC}\); when \(\frac{{2\eta^{2} }}{{A_{12} }} < G < \frac{4}{A}\), we have \(p_{i}^{PBC} > p_{i}^{PNC}\).

$$p_{j ,j \ne i}^{PBC} - p_{j ,j \ne i}^{PNC} = \frac{{A_{13} \alpha \gamma^{2} \left( {\frac{{\beta^{2} }}{\gamma } - \frac{{2\eta^{3} }}{{A_{7} }}} \right)}}{{2\left[ {2\gamma ( 2+ \eta )- \beta^{2} ( 1+ \eta )} \right](1 + \eta )\left( {2 + 4\eta + \eta^{2} } \right)^{{}} \left( {4\gamma - A\beta^{2} } \right)}}$$
(35)

\(A_{13} = (12 + 46\eta + 59\eta^{2} + 29\eta^{3} + 4\eta^{4} ) - A(12 + 40\eta + 42\eta^{2} + 16\eta^{3} + 2\eta^{4} ) > 0\). Thus, when \(0 < G < \frac{{2\eta^{3} }}{{A_{13} }}\), we have \(p_{j ,j \ne i}^{PBC} < p_{j ,j \ne i}^{PNC}\); when \(\frac{{2\eta^{3} }}{{A_{13} }} < G < \frac{4}{A}\), we have \(p_{j ,j \ne i}^{PBC} > p_{j ,j \ne i}^{PNC}\).

In summary, when \(0 < G < \hbox{min} G_{3}\), we obtain \(p_{i}^{PBC} = p_{j ,j \ne i}^{PBC} < p_{j ,j \ne i}^{PNC} < p_{i}^{PNC} < p_{{}}^{M}\); when \(\hbox{max} G_{3} < G < \frac{2(2 + \eta )}{1 + \eta }\), we obtain \(p_{{}}^{M} < p_{j ,j \ne i}^{PNC} < p_{i}^{PNC} < p_{i}^{PBC} = p_{j ,j \ne i}^{PBC}\).

$$\begin{aligned} & \min G_{3} = \min \left\{ {1,\frac{{4{\text{(}}\eta + 4\eta ^{2} {\text{)}}}}{{A_{{10}} }}{\text{,}}\frac{{4{\text{(2}}\eta + 5\eta ^{2} + 2\eta ^{2} {\text{)}}}}{{A_{{11}} }}{\text{,}}\frac{{2\eta ^{2} }}{{A_{{12}} }}{\text{,}}\frac{{2\eta ^{3} }}{{A_{{13}} }}} \right\},\;\max G_{3} = \max \left\{ {1,\frac{{4{\text{(}}\eta + 4\eta ^{2} {\text{)}}}}{{A_{{10}} }}{\text{,}}\frac{{4{\text{(2}}\eta + 5\eta ^{2} + 2\eta ^{2} {\text{)}}}}{{A_{{11}} }}{\text{,}}\frac{{2\eta ^{2} }}{{A_{{12}} }}{\text{,}}\frac{{2\eta ^{3} }}{{A_{{13}} }}} \right\}, \\ & A_{{10}} = (A - 1)(6 + 11\eta + 2\eta ^{2} ) + A(\eta + \eta ^{2} ),\;A_{{11}} = (A - 1)(12 + 34\eta + 25\eta ^{2} + 4\eta ^{3} ) + A(2\eta + 5\eta ^{2} + 2\eta ^{3} ), \\ & A_{{12}} = (6 + 17\eta + 13\eta ^{2} + 2\eta ^{3} ) - A(6 + 14\eta + 7\eta ^{2} + \eta ^{3} ), \\ & A_{{13}} = (12 + 46\eta + 59\eta ^{2} + 29\eta ^{3} + 4\eta ^{4} ) - A(12 + 40\eta + 42\eta ^{2} + 16\eta ^{3} + 2\eta ^{4} ). \\ \end{aligned}$$
$$\square$$

Proof of Proposition 5

  1. (1)

    Comparison of \(\varPi_{S} (C)\) and \(\varPi_{S} (M)\)

Under the PBC mode, we have

$$\varPi_{S} (PBC) - \varPi_{S} (M) = \frac{{\alpha^{2} \gamma (1 + \eta )}}{{2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )}} - \frac{{\alpha^{2} \gamma }}{{2(4\gamma - \beta^{2} )}} = \frac{{\alpha^{2} \gamma \left[ {4\gamma \eta + 2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} }}{{2\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} (4\gamma - \beta^{2} )}} > 0$$
(36)

Under the PNC mode, we have

$$\varPi_{S} (PNC) - \varPi_{S} (M) = \frac{{A\alpha^{2} \gamma }}{{4\gamma - A\beta^{2} }} - \frac{{\alpha^{2} \gamma }}{{2(4\gamma - \beta^{2} )}} = \frac{{\alpha^{2} \gamma \left[ {4\gamma (A - 1) + A(4\gamma - \beta^{2} )} \right]^{{}} }}{{2(4\gamma - A\beta^{2} )(4\gamma - \beta^{2} )}} > 0$$
(37)

Further, we obtain

$$\varPi_{S} (PBC) - \varPi_{S} (PNC) = \frac{{\alpha^{2} \gamma [4(1 + \eta ) - 2A(2 + \eta )]}}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{{}} (4\gamma - \beta^{2} )}} > 0$$
(38)

Thus, \(\varPi_{S} (PBC) > \varPi_{S} (PNC)\).

  1. (2)

    Comparison of \(\varPi_{R} (M)\), \(\varPi_{{R_{i} }} (C)\) and \(\varPi_{{R_{j,j \ne i} }} (C)\)

Under the PBC mode, we have

$$\varPi_{R} (M) - \varPi_{{R_{i} }} (PBC) = \varPi_{R} (M) - \varPi_{{R_{j,j \ne i} }} (PBC) = \frac{{\alpha^{2} \gamma^{4} \left[ {4\eta^{2} + G^{2} (\eta + \eta^{2} ) - G(\eta + \eta^{2} )} \right]^{{}} }}{{\left[ {2\gamma (2 + \eta ) - \beta^{2} (1 + \eta )} \right]^{2} \left( {4\gamma - \beta^{2} } \right)^{2} }}$$
(39)

Let \(F(G) = 4\eta^{2} + G^{2} (\eta + \eta^{2} ) - G(\eta + \eta^{2} ) = 0\), we obtain \(G_{{}}^{*} = 2 \pm \frac{2}{{\sqrt {1 + \eta } }}\), and \(2 + \frac{2}{{\sqrt {1 + \eta } }} > \frac{2(2 + \eta )}{1 + \eta }\).

Thus, when \(0 < G < 2 - \frac{2}{{\sqrt {1 + \eta } }}\), we have \(\varPi_{R} (M) > \varPi_{{R_{i} }} (PBC) = \varPi_{{R_{j,j \ne i} }} (PBC)\); when \(2 - \frac{2}{{\sqrt {1 + \eta } }} < G < \frac{2(2 + \eta )}{1 + \eta }\), we have \(\varPi_{R} (M) < \varPi_{{R_{i} }} (PBC) = \varPi_{{R_{j,j \ne i} }} (PBC)\).

Under the PNC mode, we have

$$\varPi_{R} (M) - \varPi_{{R_{i} }} (PNC) = \frac{{\alpha^{2} \gamma^{4} \left[ {aG^{2} + bG + c} \right]^{{}} }}{{2(1 + \eta )\left( {2 + 4\eta + \eta^{2} } \right)^{2} \left( {4\gamma - A\beta^{2} } \right)^{2} \left( {4\gamma - \beta^{2} } \right)^{2} }}$$
(40)

Let \(F(G) = aG^{2} + bG + c = 0\), we obtain \(G_{{}}^{*} = \frac{{ - b \pm \sqrt {b^{2} - 4ac} }}{2a}\), and \(\frac{{ - b + \sqrt {b^{2} - 4ac} }}{2a} > \frac{4}{A}\); \(a = 2A^{2} (1 + \eta )(2 + 4\eta + \eta^{2} )^{2} - B(2 + 3\eta )\), \(b = - 8[2A(1 + \eta )(2 + 4\eta + \eta^{2} )^{2} - B(2 + 3\eta )]\), \(c = 16[2(1 + \eta )(2 + 4\eta + \eta^{2} )^{2} - B(2 + 3\eta )]\). Thus, when \(0 < G < \frac{{ - b - \sqrt {b^{2} - 4ac} }}{2a}\), we have \(\varPi_{R} (M) > \varPi_{{R_{i} }} (PNC)\); when \(\frac{{ - b - \sqrt {b^{2} - 4ac} }}{2a} < G < \frac{4}{A}\), we have \(\varPi_{R} (M) < \varPi_{{R_{i} }} (PNC)\). In the same way, when \(0 < G < \frac{{ - b_{1} - \sqrt {b_{1}^{2} - 4a_{1} c_{1} } }}{{2a_{1} }}\), we have \(\varPi_{R} (M) > \varPi_{{R_{j,j \ne i} }} (PNC)\); when \(\frac{{ - b_{1} - \sqrt {b_{1}^{2} - 4a_{1} c_{1} } }}{{2a_{1} }} < G < \frac{4}{A}\), we have \(\varPi_{R} (M) < \varPi_{{R_{j,j \ne i} }} (PNC)\). Wherein, \(a_{1}\), \(b_{1}\) and \(c_{1}\) can be obtained by \(\varPi_{R} (M) - \varPi_{{R_{j,j \ne i} }} (PNC) = 0\). Therefore, when \(0 < G < \frac{{ - b_{1} - \sqrt {b_{1}^{2} - 4a_{1} c_{1} } }}{{2a_{1} }}\), we have \(\varPi_{{R_{j,j \ne i} }} (PNC) < \varPi_{{R_{i} }} (PBC) = \varPi_{{R_{j,j \ne i} }} (PBC) < \varPi_{{R_{i} }} (PNC)\), when \(\frac{{ - b_{1} - \sqrt {b_{1}^{2} - 4a_{1} c_{1} } }}{{2a_{1} }} < G < \frac{4}{A}\), we have \(\varPi_{{R_{j,j \ne i} }} (PNC) < \varPi_{{R_{i} }} (PNC) < \varPi_{{R_{i} }} (PBC) = \varPi_{{R_{j,j \ne i} }} (PBC)\).

In summary, when \(0 < G < \hbox{min} G_{4}\), \(\varPi_{{R_{j,j \ne i} }} (PNC) < \varPi_{{R_{i} }} (PBC) = \varPi_{{R_{j,j \ne i} }} (PBC) < \varPi_{{R_{i} }} (PNC) < \varPi_{R} (M)\); when \(\hbox{max} G_{4} < G < \frac{2(2 + \eta )}{1 + \eta }\), we have \(\varPi_{R} (M) < \varPi_{{R_{j ,j \ne i} }} (PNC) < \varPi_{{R_{i} }} (PNC) < \varPi_{{R_{i} }} (PBC) = \varPi_{{R_{j ,j \ne i} }} (PBC)\).

$$\begin{aligned} & \hbox{min} G_{4} = \hbox{min} \left\{ {1 ,2 - \frac{2}{{\sqrt {1 + \eta } }} ,\frac{{ - b_{1} - \sqrt {b_{1}^{2} - 4a_{1} c_{1} } }}{{2a_{1} }}} \right\},\;\hbox{max} G_{3} = \hbox{max} \left\{ {1 ,2 - \frac{2}{{\sqrt {1 + \eta } }} ,\frac{{ - b_{1} - \sqrt {b_{1}^{2} - 4a_{1} c_{1} } }}{{2a_{1} }}} \right\}, \\ & a = 2A^{2} (1 + \eta )(2 + 4\eta + \eta^{2} )^{2} - B(2 + 3\eta ),\;b = - 8[2A(1 + \eta )(2 + 4\eta + \eta^{2} )^{2} - B(2 + 3\eta )], \\ & c = 16[2(1 + \eta )(2 + 4\eta + \eta^{2} )^{2} - B(2 + 3\eta )]. \\ \end{aligned}$$

\(\square\)

Proof of Proposition 6

In the case of effective implementation of the EPBC mode, when \(\kappa_{i} > \kappa_{j,j \ne i}\), we have

$$\begin{aligned} & p_{i}^{EPBC} - p_{j,j \ne i}^{EPBC} = \frac{{(\kappa_{i} - \kappa_{j,j \ne i} )\theta^{EPBC} }}{(2 + 3\eta )} > 0,\;Q_{i}^{EPBC} - Q_{j,j \ne i}^{EPBC} = \frac{{(1 + \eta )(\kappa_{i} - \kappa_{j,j \ne i} )\theta^{EPBC} }}{(2 + 3\eta )} > 0 \\ & \varPi_{{R_{i} }} (EPBC) - \varPi_{{R_{j,j \ne i} }} (EPBC) = (p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} - (p_{j,j \ne i}^{EPBC} - w^{EPBC} )Q_{j,j \ne i}^{EPBC} > 0. \\ \end{aligned}$$

When \(\kappa_{i} < \kappa_{j,j \ne i}\), we have

$$\begin{aligned} & p_{i}^{EPBC} - p_{j,j \ne i}^{EPBC} = \frac{{(\kappa_{i} - \kappa_{j,j \ne i} )\theta^{EPBC} }}{(2 + 3\eta )} < 0,\;Q_{i}^{EPBC} - Q_{j,j \ne i}^{EPBC} = \frac{{(1 + \eta )(\kappa_{i} - \kappa_{j,j \ne i} )\theta^{EPBC} }}{(2 + 3\eta )} < 0, \\ & \varPi_{{R_{i} }} (EPBC) - \varPi_{{R_{j,j \ne i} }} (EPBC) = (p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} - (p_{j,j \ne i}^{EPBC} - w^{EPBC} )Q_{j,j \ne i}^{EPBC} < 0. \\ \end{aligned}$$

Finally, combined with the constraint of effective implementation of the EPBC mode, we obtain \(0 < \kappa_{i} + \kappa_{j ,j \ne i} < \sqrt {8\gamma (2 + \eta )/(1 + \eta )} - 2\beta\).

Let \(\kappa = \kappa_{i} + \kappa_{j ,j \ne i} = \sqrt {8\gamma (2 + \eta )/(1 + \eta )} - 2\beta\), we have \(\frac{d\kappa }{d\beta } = - 2 < 0\), That is, \(\kappa\) decreases with \(\beta\). Therefore, the total technology marketing effect (\(\kappa = \kappa_{i} + \kappa_{j ,j \ne i}\)) and the technology spillover effect \(\beta\) form a complementary relationship; when \(\kappa_{i}\) is constant, we can verify that the technology marketing effect \(\kappa_{j ,j \ne i}\) and the technology spillover effect \(\beta\) form a complementary relationship; when \(\kappa_{j ,j \ne i}\) is unchanged, we can also verify that the technology marketing effect \(\kappa_{i}\) and the technology spillover effect \(\beta\) form a complementary relationship. \(\square\)

Proof of Proposition 7

  1. (1)

    After comparing PBC mode and EPBC mode, we have

    $$\varPi_{S} (EPBC) - \varPi_{S} (PBC) = w^{EPBC} (Q_{i}^{EPBC} + Q_{j ,j \ne i}^{EPBC} )- \gamma (\theta^{EPBC} )^{2} - \frac{{\alpha^{2} (1 + \eta )}}{2(2 + \eta ) - G(1 + \eta )} > 0$$
    (41)

Therefore, the optimal strategic mode of technology service provider is EPBC mode.

  1. (2)

    After comparing PBC mode and EPBC mode, we have

    $$\varPi_{{R_{i} }} (EPBC) - \varPi_{{R_{i} }} (PBC) = (p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} - F - \frac{{\alpha^{2} (1 + \eta )}}{{\left[ {2(2 + \eta ) - G(1 + \eta )} \right]^{2} }}$$
    (42)

Let \(\varPi_{{R_{i} }} (EPBC) - \varPi_{{R_{i} }} (PBC) = 0\), we obtain

$$F = (p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} - \frac{{\alpha^{2} (1 + \eta )}}{{\left[ {2(2 + \eta ) - G(1 + \eta )} \right]^{2} }}$$
(43)

When \(\kappa_{i} > \kappa_{j,j \ne i}\), two thresholds of \(F\) are

$$F_{1} = (p_{j}^{EPBC} - w^{EPBC} )Q_{j}^{EPBC} \left| {_{{\kappa_{i}^{ *} + \kappa_{j,j \ne i}^{ *} }} } \right. - \frac{{\alpha^{2} (1 + \eta )}}{{\left[ {2(2 + \eta ) - G(1 + \eta )} \right]^{2} }}$$
(44)
$$F_{2} = (p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} \left| {_{{\kappa_{i}^{ *} + \kappa_{j,j \ne i}^{ *} }} } \right. - \frac{{\alpha^{2} (1 + \eta )}}{{\left[ {2(2 + \eta ) - G(1 + \eta )} \right]^{2} }}$$
(45)

Wherein, \(\kappa_{i}^{ *} + \kappa_{j,j \ne i}^{ *} = \arg \hbox{max} \{ 8\gamma (2 + \eta ) - (1 + \eta )(2\beta + \kappa_{i} + \kappa_{j ,j \ne i} )^{2} \}\), thus \(F_{1} < F_{2}\).

If \(F > F_{2}\), we have \(\varPi_{{R_{i} }} (EPBC) - \varPi_{{R_{i} }} (PBC) < 0\), \(\varPi_{{R_{j} }} (EPBC) - \varPi_{{R_{j} }} (PBC) < 0\), that is, the optimal strategic mode of retailer \(R_{i}\) and \(R_{j,j \ne i}\) is PBC; if \(F_{1} < F < F_{2}\), we have \(\varPi_{{R_{i} }} (EPBC)\left| {_{{\kappa_{i}^{ *} + \kappa_{j,j \ne i}^{ *} }} } \right. - \varPi_{{R_{i} }} (PBC) > 0\), \(\varPi_{{R_{j} }} (EPBC) - \varPi_{{R_{j} }} (PBC) < 0\), that is, the optimal strategic mode of retailer \(R_{i}\) is EPBC mode, while the optimal strategic mode of retailer \(R_{j,j \ne i}\) is PBC mode; if \(F < F_{1}\), we have \(\varPi_{{R_{i} }} (EPBC) - \varPi_{{R_{i} }} (PBC) > 0\), \(\varPi_{{R_{j} }} (EPBC) - \varPi_{{R_{j} }} (PBC) > 0\), that is, the optimal strategic mode of retailer \(R_{i}\) and \(R_{j,j \ne i}\) is EPBC mode. When \(\kappa_{i} < \kappa_{j,j \ne i}\), the same conclusion can be obtained according to the above analysis. Therefore, there exists two thresholds \(F^{*} > 0\) and \(F^{**} ( \ge F^{*} )\) such that: if \(F < F^{*}\), EPBC mode is the optimal strategic choice of two retailers; if \(F^{*} < F < F^{**}\), the strategic mode choice between retailer \(R_{i}\) and \(R_{j,j \ne i}\) aren’t consistent (that is, retailer \(R_{j,j \ne i}\) with smaller technology marketing effect will choose PBC mode, while retailer \(R_{i}\) with greater technology marketing effect will choose EPBC mode); if \(F > F^{**}\), PBC mode is the optimal strategic choice of two retailers.

$$F^{*} = \hbox{min} \left\{ {(p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} ,(p_{j}^{EPBC} - w^{EPBC} )Q_{j}^{EPBC} } \right\}\left| {_{{\kappa_{i}^{*} + \kappa_{j,j \ne i}^{*} }} } \right. - \frac{{\alpha^{2} (1 + \eta )}}{{\left[ {2(2 + \eta ) - G(1 + \eta )} \right]^{2} }}$$
(46)
$$F^{ * *} = \hbox{max} \left\{ {(p_{i}^{EPBC} - w^{EPBC} )Q_{i}^{EPBC} ,(p_{j}^{EPBC} - w^{EPBC} )Q_{j}^{EPBC} } \right\}\left| {_{{\kappa_{i}^{ *} + \kappa_{j,j \ne i}^{ *} }} } \right. - \frac{{\alpha^{2} (1 + \eta )}}{{\left[ {2(2 + \eta ) - G(1 + \eta )} \right]^{2} }}$$
(47)
$$\kappa_{i}^{*} + \kappa_{j,j \ne i}^{*} = \arg \hbox{max} \{ 8\gamma (2 + \eta ) - (1 + \eta )(2\beta + \kappa_{i} + \kappa_{j,j \ne i} )^{2} \}$$
(48)

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Zhou, Z. Monopoly or competition: strategic analysis of a retailing technology service provision. Electron Commer Res 22, 1651–1689 (2022). https://doi.org/10.1007/s10660-020-09426-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-020-09426-z

Keywords

Navigation