Characteristics of nonbuoyant jets in a wave environment investigated numerically by SPH | Environmental Fluid Mechanics
Skip to main content

Characteristics of nonbuoyant jets in a wave environment investigated numerically by SPH

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Numerical experiments of plane jets are performed to investigate their behaviour into a still ambient and into a flow field of regular waves. SPH simulations are obtained by a pseudo-compressible XSPH scheme with pressure smoothing; turbulent stresses are represented by a two-equation k-ε model. The SPH model is validated by comparing the obtained results with experimental measurements and analytical solutions. The main fluid mechanical characteristics of jets discharged either in still water or transversally to regular wave trains characterized by different heights are compared. The study focuses specifically on the role played by the wave heights on the velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albertson ML et al (1950) Diffusion of submerged jets. Trans ASCE 115:639–697

    Google Scholar 

  2. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580

    Google Scholar 

  3. Aristodemo F, Marrone S, Federico I (2015) SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng 105:160–175

    Google Scholar 

  4. Aristodemo F, Tripepi G, Meringolo DD, Veltri P (2017) Solitary wave-induced forces on horizontal circular cylinders: laboratory experiments and SPH simulations. Coast Eng 129:17–35

    Google Scholar 

  5. Capone T, Panizzo A, Monaghan JJ (2010) SPH modelling of water waves generated by submarine landslides. J Hydraul Res 48:80–84

    Google Scholar 

  6. Chen YP, Li CW, Zhang CK (2008) Numerical modeling of a round jet discharged into random waves. Ocean Eng 35(1):77–89

    Google Scholar 

  7. Chen YP, Li CW, Zhang CK, Xu ZS (2012) Numerical study of a round buoyant jet under the effect of JONSWAP random waves. China Ocean Eng. 26(2):235–250

    Google Scholar 

  8. Chyan JM, Hwung HH (1993) On the interaction of a turbulent jet with waves. J Hydraul Res 31(6):791–810

    Google Scholar 

  9. Dai HC, Wang LL (2005) Numerical study of submerged vertical plane jets under progressive water surface waves. China Ocean Eng 19(3):433–442

    Google Scholar 

  10. Dalrymple RA, Rogers BD (2006) Numerical modelling of waves with the SPH method. Coast Eng 53:131–147

    Google Scholar 

  11. De Chowdhury S, Sannasiraj SA (2013) SPH Simulation of shallow water wave propagation. Ocean Eng 60(2013):41–52

    Google Scholar 

  12. De Padova D, Mossa M, Sibilla S, Torti E (2013) 3D SPH modelling of hydraulic jump in a very large channel. J Hydraul Res 51:158–173

    Google Scholar 

  13. De Padova D, Dalrymple RA, Mossa M (2014) Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. J Hydraul Res 52:836–848

    Google Scholar 

  14. De Padova D, Mossa M, Sibilla S (2016) SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker. Environ Fluid Mech 16:267–287

    Google Scholar 

  15. De Padova D, Mossa M, Sibilla S (2017) SPH modelling of hydraulic jump oscillations at an abrupt drop. Water 9(10):790. https://doi.org/10.3390/w9100790

    Article  Google Scholar 

  16. De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of characteristics of hydraulic jumps. Environ Fluid Mech. https://doi.org/10.1007/s10652-017-9566-4

    Article  Google Scholar 

  17. De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop. J Hydrodyn 30(1):106–113

    Google Scholar 

  18. De Padova D, Brocchini M, Buriani F, Corvaro S, De Serio F, Mossa M, Sibilla S (2018) Experimental and numerical investigation of pre-breaking and breaking vorticity within a plunging breaker. Water 10:387. https://doi.org/10.3390/w10040387

    Article  Google Scholar 

  19. De Padova D, Mossa M, Sibilla S (2019) Numerical investigation of the behaviour of jets in a wave environment. J Hydraul Res. https://doi.org/10.1080/00221686.2019.1647886

    Article  Google Scholar 

  20. De Padova D, Ben Meftah M, De Serio F, Mossa M, Sibilla S (2019) Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH. Environ Fluid Mech. https://doi.org/10.1007/s10652-019-09699-5

    Article  Google Scholar 

  21. Espa P, Sibilla S, Gallati M (2008) SPH simulations of a vertical 2-D liquid jet introduced from the bottom of a free-surface rectangular tank. Adv Appl Fluid Mech 3:105–140

    Google Scholar 

  22. Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B/Fluids 34:35–46

    Google Scholar 

  23. Fischer HB, List EG, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, New York, p 483

    Google Scholar 

  24. Gomez-Gesteira M, Rogers BD, Darlymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27

    Google Scholar 

  25. Gotoh H, Shibihara T, Sakai T (2001) Sub-particle-scale model for the MPS method—Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9(4):339–347

    Google Scholar 

  26. Gotoh H, Shao S, Memita T (2004) SPH_LES model for numerical investigation of wave interaction with partially immersed breakwater. Coast Eng J 46(1):39–63

    Google Scholar 

  27. Hasselbrink EF, Mungal MG (2001) Transverse jets and jet flames. part 1. Scaling laws for strong transverse jets. J Fluid Mech 443:1–25

    Google Scholar 

  28. Hsiao SC, Hsu TW, Lin JF, Chang KA (2011) Mean and turbulence properties of a neutrally buoyant round jet in a wave environment. J Waterway Port Coast Ocean Eng 137(3):109–122

    Google Scholar 

  29. Jirka GH, Harleman DRF (1979) “Stability and mixing of a vertical plane buoyant jet in confined depth. J Fluid Mech 94(2):275–304

    Google Scholar 

  30. Koole R, Swan C (1994) Measurements of a 2-D non-buoyant jet in a wave environment. Coast Eng 24:151–169

    Google Scholar 

  31. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Google Scholar 

  32. Lo E, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24:275–286

    Google Scholar 

  33. Manenti S, Pierobon E, Gallati M, Sibilla S, D’Alpaos L, Macchi EG, Todeschini S (2016) Vajont disaster: smoothed particle hydrodynamics modeling of the post-event 2D experiments. J Hydraul Eng 142(05015007):1–11

    Google Scholar 

  34. Makris CV, Memos CD, Krestenitis YN (2016) Numerical modeling of surf zone dynamics under weakly plunging breakers with SPH method. Ocean Model 98:12–35

    Google Scholar 

  35. Marrone S, Colagrossi A, Park JS, Campana EF (2017) Challenges on the numerical prediction of slamming loads on LNG tank insulation panels. Ocean Eng 141:512–530

    Google Scholar 

  36. Meringolo DD, Colagrossi A, Marrone S, Aristodemo F (2017) On the filtering of acoustic components in weakly-compressible SPH simulations. J Fluids Struct 70:1–23

    Google Scholar 

  37. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Google Scholar 

  38. Mori N, Chang KA (2003) Experimental study of a horizontal jet in a wavy environment. J Eng Mech 129(10):1149–1155

    Google Scholar 

  39. Mossa M (2004) Experimental study on the interaction of non-buoyant jets and waves. J Hydraul Res 42(1):13–28

    Google Scholar 

  40. Mossa M (2004) Behavior of Nonbuoyant Jets in a Wave Environment. J Hydraul Eng 130(7):704–717

    Google Scholar 

  41. Muppidi S, Mahesh K (2005) Study of trajectories of jets in crossflow using direct numerical simulations. J Fluid Mech 530:81–100

    Google Scholar 

  42. Papanicolaou PN, List EJ (1988) Investigation of round vertical turbulent buoyant jets. J Fluid Mech 195:341–391

    Google Scholar 

  43. Rajaratnam N (1976) Turbulent jets. Elsevier, Amsterdam

    Google Scholar 

  44. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408

    Google Scholar 

  45. Ryu Y, Chang KA, Mori N (2005) Dispersion of neutrally buoyant horizontal round jet in wave environment. J Hydraul Eng 131(12):1088–1097

    Google Scholar 

  46. Shao S (2006) Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int J Num Method Fluids 50(5):597–621

    Google Scholar 

  47. Shao S (2006) Simulation of breaking wave by SPH method coupled with k–ε model. J Hydraul Res 40(3):338–349

    Google Scholar 

  48. Sibilla S (2015) An algorithm to improve consistency in smoothed particle hydrodynamics. Comput Fluids 118:148–158

    Google Scholar 

  49. Subramanya K, Porey PD (1984) Trajectory of a turbulent cross jet. J Hydraul Res 22(5):343–354

    Google Scholar 

  50. Ulrich C, Leonardi M, Rung T (2013) Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems. Ocean Eng 64:109–121

    Google Scholar 

  51. Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. Oxford University Press, Oxford

    Google Scholar 

  52. Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53:277–304

    Google Scholar 

  53. Wood IR, Bell RG, Wilkinson DL (1993) Ocean disposal of wastewater. Advances series on ocean engineering. World Scientific, Singapore, p 425

    Google Scholar 

  54. Xu Z, Chen Y, Wang Y, Zhang C (2017) Near-field dilution of a turbulent jet discharged into coastal waters: effect of regular waves. Ocean Eng 140:29–42

    Google Scholar 

  55. Yuan LL, Street RL (1998) Trajectory and entrainment of a round jet in crossflow. Phys Fluids 10(9):2323–2335

    Google Scholar 

  56. Zijnem BG, Der Hegge Van (1958) Measuremnts at turbulence in a plane jet of air by the diffusion methos by the hot wire method. Appl Sci Res A 7:293–313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana De Padova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Padova, D., Mossa, M. & Sibilla, S. Characteristics of nonbuoyant jets in a wave environment investigated numerically by SPH. Environ Fluid Mech 20, 189–202 (2020). https://doi.org/10.1007/s10652-019-09712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-019-09712-x

Keywords