Abstract
The rapid advancements in generative AI models present new opportunities in the education sector. However, it is imperative to acknowledge and address the potential risks and concerns that may arise with their use. We analyzed Twitter data to identify critical concerns related to the use of ChatGPT in education. We employed BERT-based topic modeling to conduct a discourse analysis and social network analysis to identify influential users in the conversation. While Twitter users generally expressed a positive attitude toward using ChatGPT, their concerns converged into five categories: academic integrity, impact on learning outcomes and skill development, limitation of capabilities, policy and social concerns, and workforce challenges. We also found that users from the tech, education, and media fields were often implicated in the conversation, while education and tech individual users led the discussion of concerns. Based on these findings, the study provides several implications for policymakers, tech companies and individuals, educators, and media agencies. In summary, our study underscores the importance of responsible and ethical use of AI in education and highlights the need for collaboration among stakeholders to regulate AI policy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The dataset and materials supporting this study are available from the corresponding author upon reasonable request. It should be noted that restrictions apply to the availability of tweet data due to the policy from Twitter Inc. Tweet data showing user profiles or text content is not allowed to share publicly, but the tweet ids and user ids are available from the corresponding author.
References
Abdelghani, R., Wang, Y. H., Yuan, X., Wang, T., Lucas, P., Sauzéon, H., & Oudeyer, P. Y. (2022). GPT-3-driven pedagogical agents for training children’s curious question-asking skills. https://doi.org/10.48550/ARXIV.2211.14228
Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429. https://doi.org/10.30935/cedtech/13152
Ahmed, Y. A., Ahmad, M. N., Ahmad, N., & Zakaria, N. H. (2019). Social media for knowledge-sharing: A systematic literature review. Telematics and Informatics, 37, 72–112. https://doi.org/10.1016/j.tele.2018.01.015
AlAfnan, M. A., Dishari, S., Jovic, M., & Koba Lomidze. (2023). ChatGPT as an Educational Tool: Opportunities, Challenges, and recommendations for communication, business writing, and composition courses. Journal of Artificial Intelligence and Technology. https://doi.org/10.37965/jait.2023.0184
Alser, M., & Waisberg, E. (2023). Concerns with the usage of ChatGPT in Academia and Medicine: A viewpoint. American Journal of Medicine Open, 100036. https://doi.org/10.1016/j.ajmo.2023.100036
Atlas, S. (2023). ChatGPT for Higher Education and Professional Development: A guide to conversational AI. College of Business Faculty Publications. https://digitalcommons.uri.edu/cba_facpubs/548
Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the era of Generative Artificial Intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4337484
Barberá, P., & Rivero, G. (2015). Understanding the political representativeness of Twitter users. Social Science Computer Review, 33(6), 712–729. https://doi.org/10.1177/0894439314558836
Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., & Neves, L. (2020). TweetEval: Unified Benchmark and comparative evaluation for Tweet classification. Findings of the Association for Computational Linguistics: EMNLP 2020, 1644–1650. https://doi.org/10.18653/v1/2020.findings-emnlp.148
Bernius, J. P., Krusche, S., & Bruegge, B. (2022). Machine learning based feedback on textual student answers in large courses. Computers and Education: Artificial Intelligence, 3, 100081. https://doi.org/10.1016/j.caeai.2022.100081
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A., Holt, B., & Varoquaux, G. (2013). API design for machine learning software: Experiences from the scikit-learn project. https://doi.org/10.48550/ARXIV.1309.0238
Chen, T. J. (2023). ChatGPT and other artificial intelligence applications speed up scientific writing. Journal of the Chinese Medical Association, 86(4), 351–353. https://doi.org/10.1097/JCMA.0000000000000900
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P., de Kaplan, O., Edwards, J., Burda, H., Joseph, Y., Brockman, N., Ray, G., Puri, A., Krueger, R., Petrov, G., Khlaaf, M., Sastry, H., Mishkin, G., Chan, P., Gray, B., & Zaremba, S. (2021). W. Evaluating Large Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374
Choi, J. H., Hickman, K. E., Monahan, A., & Schwarcz, D. B. (2023). ChatGPT goes to Law School. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4335905
Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111. https://doi.org/10.1103/PhysRevE.70.066111
CMU Block Center for Technology and Society. (2020). A policy maker’s guide to Artificial Intelligence for State and local governments: Reaching Safe, Effective and Equitable Scale. Carnegie Mellon University. https://www.cmu.edu/block-center/files/andes-whitepaper-policymakers-guide.pdf
Cooper, T., Stavros, C., & Dobele, A. R. (2019). Domains of influence: Exploring negative sentiment in social media. Journal of Product & Brand Management, 28(5), 684–699. https://doi.org/10.1108/JPBM-03-2018-1820
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North, 4171–4186. https://doi.org/10.18653/v1/N19-1423
Dijkstra, R., Genc, Z., Kayal, S., & Kamps, J. (2022). Reading Comprehension Quiz Generation using Generative Pre-trained Transformers.
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., & Wright, R. (2023). So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., & Hemphill, L. (2023). A Bibliometric Review of Large Language Models Research from 2017 to 2023. https://doi.org/10.48550/ARXIV.2304.02020
Fauzi, F., Tuhuteru, L., Sampe, F., Ausat, A. M. A., & Hatta, H. R. (2023). Analysing the role of ChatGPT in improving Student Productivity in Higher Education. Journal on Education, 5(4), 14886–14891. https://doi.org/10.31004/joe.v5i4.2563
Feng, Y., Poralla, P., Dash, S., Li, K., Desai, V., & Qiu, M. (2023). The Impact of ChatGPT on Streaming Media: A Crowdsourced and Data-Driven Analysis using Twitter and Reddit.
Fijačko, N., Gosak, L., Štiglic, G., Picard, C. T., & Douma, J. (2023). M. Can ChatGPT pass the life support exams without entering the American heart association course? Resuscitation, 185, 109732. https://doi.org/10.1016/j.resuscitation.2023.109732
Firat, M. (2023). How Chat GPT can transform autodidactic experiences and Open Education? [Preprint] Open Science Framework. https://doi.org/10.31219/osf.io/9ge8m
Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164. https://doi.org/10.1002/spe.4380211102
Future of Life Institute (2023, March 22). Pause Giant AI Experiments: An Open Letter. Future of Life Institute. https://futureoflife.org/open-letter/pause-giant-ai-experiments/
Gabajiwala, E., Mehta, P., Singh, R., & Koshy, R. (2022). Quiz Maker: Automatic Quiz Generation from Text Using NLP. In P. K. Singh, S. T. Wierzchoń, J. K. Chhabra, & S. Tanwar (Eds.), Futuristic Trends in Networks and Computing Technologies (Vol. 936, pp. 523–533). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5037-7_37
Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. https://doi.org/10.48550/ARXIV.2203.05794
Haensch, A. C., Ball, S., Herklotz, M., & Kreuter, F. (2023). Seeing ChatGPT Through Students’ Eyes: An Analysis of TikTok Data (arXiv:2303.05349). arXiv. http://arxiv.org/abs/2303.05349
Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. Contemporary Educational Technology, 15(2), ep421. https://doi.org/10.30935/cedtech/13036
Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks Standards and Evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089
Haque, M. U., Dharmadasa, I., Sworna, Z. T., Rajapakse, R. N., & Ahmad, H. (2022). “I think this is the most disruptive technology”: Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. https://doi.org/10.48550/ARXIV.2212.05856
Hurst, L. (2023, March 29). “Profound risk to humanity”: Experts call for halt to AI development. Euronews. https://www.euronews.com/next/2023/03/29/profound-risk-to-humanity-elon-musk-and-steve-wozniak-join-calls-to-halt-ai-development
Iskender, A. (2023). Holy or Unholy? Interview with Open AI’s ChatGPT. European Journal of Tourism Research, 34, 3414. https://doi.org/10.54055/ejtr.v34i.3169
Jia, Q., Cui, J., Xiao, Y., Liu, C., Rashid, P., & Gehringer, E. F. (2021). ALL-IN-ONE: Multi-Task Learning BERT models for Evaluating Peer Assessments (arXiv:2110.03895). arXiv. http://arxiv.org/abs/2110.03895
Johnson, A. (2023, January 23). ChatGPT In Schools: Here’s Where It’s Banned—And How It Could Potentially Help Students. Forbes. https://www.forbes.com/sites/ariannajohnson/2023/01/18/chatgpt-in-schools-heres-where-its-banned-and-how-it-could-potentially-help-students/?sh=443643686e2c
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kelly, S. M. (2022, December 5). This AI chatbot is dominating social media with its frighteningly good essays | CNN Business. CNN. https://www.cnn.com/2022/12/05/tech/chatgpt-trnd/index.html
Kelly, S. M. (2023, January 26). ChatGPT passes exams from law and business schools | CNN Business. CNN. https://www.cnn.com/2023/01/26/tech/chatgpt-passes-exams/index.html
Kim, J., Bae, J., & Hastak, M. (2018). Emergency information diffusion on online social media during storm Cindy in U.S. International Journal of Information Management, 40, 153–165. https://doi.org/10.1016/j.ijinfomgt.2018.02.003
Koetsier, J. (2023, March 14). GPT-4 Beats 90% Of Lawyers Trying To Pass The Bar. Forbes. https://www.forbes.com/sites/johnkoetsier/2023/03/14/gpt-4-beats-90-of-lawyers-trying-to-pass-the-bar/
Korn, J. (2023, February 22). Vanderbilt University apologizes for using ChatGPT to write mass-shooting email | CNN Business. CNN. https://www.cnn.com/2023/02/22/tech/vanderbilt-chatgpt-shooting-email/index.html
Lee, H. (2023). The rise of ChatGPT: Exploring its potential in medical education. Anatomical Sciences Education, ase.2270. https://doi.org/10.1002/ase.2270
Leiter, C., Zhang, R., Chen, Y., Belouadi, J., Larionov, D., Fresen, V., & Eger, S. (2023). ChatGPT: A Meta-Analysis after 2.5 Months. https://doi.org/10.48550/ARXIV.2302.13795
Li, L., Ma, Z., & Cao, T. (2021). Data-driven investigations of using social media to aid evacuations amid western United States wildfire season. Fire Safety Journal, 126, 103480. https://doi.org/10.1016/j.firesaf.2021.103480
Li, L., Johnson, J., Aarhus, W., & Shah, D. (2022). Key factors in MOOC pedagogy based on NLP sentiment analysis of learner reviews: What makes a hit. Computers & Education, 176, 104354. https://doi.org/10.1016/j.compedu.2021.104354
Li, L., Fan, L., Atreja, S., & Hemphill, L. (2023). “HOT” ChatGPT: The promise of ChatGPT in detecting and discriminating hateful, offensive, and toxic comments on social media. https://doi.org/10.48550/ARXIV.2304.10619
Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790
Loureiro, D., Barbieri, F., Neves, L., Anke, L. E., & Camacho-Collados, J. (2022). TimeLMs: Diachronic Language Models from Twitter. https://doi.org/10.48550/ARXIV.2202.03829
Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, asi.24750. https://doi.org/10.1002/asi.24750
MacNeil, S., Tran, A., Mogil, D., Bernstein, S., Ross, E., & Huang, Z. (2022). Generating Diverse Code Explanations using the GPT-3 Large Language Model. Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 2, 37–39. https://doi.org/10.1145/3501709.3544280
Malik, A., Khan, M. L., & Hussain, K. (2023). How is ChatGPT transforming academia? Examining its impact on teaching, Research, Assessment, and Learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4413516
McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://doi.org/10.48550/ARXIV.1802.03426
Meckler, L., & Verma, P. (2022, December 29). Teachers are on alert for inevitable cheating after release of ChatGPT. Washington Post. https://www.washingtonpost.com/education/2022/12/28/chatbot-cheating-ai-chatbotgpt-teachers/
Megahed, F. M., Chen, Y. J., Ferris, J. A., Knoth, S., & Jones-Farmer, L. A. (2023). How Generative AI models such as ChatGPT can be (Mis)Used in SPC Practice, Education, and Research? An Exploratory Study. https://doi.org/10.48550/ARXIV.2302.10916
Mhlanga, D. (2023). Open AI in Education, the responsible and ethical use of ChatGPT towards lifelong learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4354422
Milmo, D. (2023, February 2). ChatGPT reaches 100 million users two months after launch. The Guardian. https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
Mintz, M. P. R. (2023, January 15). Steven. ChatGPT: Threat or Menace?https://www.insidehighered.com/blogs/higher-ed-gamma/chatgpt-threat-or-menace
Mislove, A., Lehmann, S., Ahn, Y. Y., Onnela, J. P., & Rosenquist, J. (2021). Understanding the Demographics of Twitter Users. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 554–557. https://doi.org/10.1609/icwsm.v5i1.14168
Moore, S., Nguyen, H. A., Bier, N., Domadia, T., & Stamper, J. (2022). Assessing the quality of student-generated short answer questions using GPT-3. In I. Hilliger, P. J. Muñoz-Merino, De T. Laet, A. Ortega-Arranz, & T. Farrell (Eds.), Educating for a New Future: Making sense of technology-enhanced learning adoption (13450 vol., pp. 243–257). Springer International Publishing. https://doi.org/10.1007/978-3-031-16290-9_18
Nguyen, D. Q., Vu, T., & Nguyen, A. T. (2020). BERTweet: A pre-trained language model for English Tweets. https://doi.org/10.48550/ARXIV.2005.10200
OpenAI (2022a, November 2). DALL·E API now available in public beta. https://openai.com/blog/dall-e-api-now-available-in-public-beta
OpenAI (2022b, November 30). Introducing ChatGPT. https://openai.com/blog/chatgpt
OpenAI (2023, March 14). GPT-4. https://openai.com/research/gpt-4
Park, Y. H., Choi, Y. S., Park, C. Y., & Lee, K. J. (2022). EssayGAN: Essay Data Augmentation based on Generative Adversarial Networks for Automated Essay Scoring. Applied Sciences, 12(12), 5803. https://doi.org/10.3390/app12125803
Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education. Journalism & Mass Communication Educator, 78(1), 84–93. https://doi.org/10.1177/10776958221149577
Pichai, S. (2023, February 6). An important next step on our AI journey. Google. https://blog.google/technology/ai/bard-google-ai-search-updates/
Powell, J. (2015). A librarian’s guide to graphs, data and the semantic web (1st edition). Elsevier.
Qadir, J. (2022). Engineering Education in the Era of ChatGPT: Promise and Pitfalls of Generative AI for Education [Preprint]. https://doi.org/10.36227/techrxiv.21789434.v1
Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. https://doi.org/10.48550/ARXIV.1908.10084
Roose, K. (2023, January 12). Don’t Ban ChatGPT in Schools. Teach With It. The New York Times. https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html
Rosenblatt, K. (2023, January 23). ChatGPT passes MBA exam given by a Wharton professor. NBC News. https://www.nbcnews.com/tech/tech-news/chatgpt-passes-mba-exam-wharton-professor-rcna67036
Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning & Teaching, 6(1), https://doi.org/10.37074/jalt.2023.6.1.9
Ryan-Mosley, T. (2023, March 27). An early guide to policymaking on generative AI. MIT Technology Review. https://www.technologyreview.com/2023/03/27/1070285/early-guide-policymaking-generative-ai-gpt4/
Sallam, M. (2023). ChatGPT Utility in Healthcare Education, Research, and practice: Systematic review on the promising perspectives and valid concerns. Healthcare, 11(6), 887. https://doi.org/10.3390/healthcare11060887
Sallam, M., Salim, N., Barakat, M., & Al-Tammemi, A. (2023). ChatGPT applications in medical, dental, pharmacy, and public health education: A descriptive study highlighting the advantages and limitations. Narra J, 3(1), e103. https://doi.org/10.52225/narra.v3i1.103
Schofield, A., Magnusson, M., & Mimno, D. (2017). Pulling Out the Stops: Rethinking Stopword Removal for Topic Models. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, 432–436. https://doi.org/10.18653/v1/E17-2069
Shepardson, D., & Bartz, D. (2023, April 12). US begins study of possible rules to regulate AI like ChatGPT | Reuters. Reuters. https://www.reuters.com/technology/us-begins-study-possible-rules-regulate-ai-like-chatgpt-2023-04-11/
Shravya Bhat, Nguyen, H., Moore, S., Stamper, J., Sakr, M., & Nyberg, E. (2022). Towards Automated Generation and Evaluation of Questions in Educational Domains. https://doi.org/10.5281/ZENODO.6853085
Smith, M., Ceni, A., Milic-Frayling, N., Shneiderman, B., Mendes Rodrigues, E., Leskovec, L., & Dunne, C. (2010). NodeXL: a free and open network overview, discovery and exploration add-in for Excel 2007/2010/2013/2016 from the Social Media Research Foundation. https://www.smrfoundation.org/nodexl/faq/how-do-i-cite-nodexl-in-my-research-publication/
Sok, S., & Heng, K. (2023). ChatGPT for Education and Research: A review of benefits and risks. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4378735
Stokel-Walker, C. (2022). AI bot ChatGPT writes smart essays—should professors worry? Nature. https://doi.org/10.1038/d41586-022-04397-7
Sun, G. H., & Hoelscher, S. H. (2023). The ChatGPT Storm and what Faculty can do. Nurse Educator, 48(3), 119–124. https://doi.org/10.1097/NNE.0000000000001390
Tack, A., & Piech, C. (2022). The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues. https://doi.org/10.5281/ZENODO.6853187
Taecharungroj, V. (2023). What can ChatGPT do? Analyzing early reactions to the innovative AI Chatbot on Twitter. Big Data and Cognitive Computing, 7(1), 35. https://doi.org/10.3390/bdcc7010035
Thorp, H. H. (2023). ChatGPT is fun, but not an author. Science, 379(6630), 313–313. https://doi.org/10.1126/science.adg7879
Thurzo, A., Strunga, M., Urban, R., Surovková, J., & Afrashtehfar, K. I. (2023). Impact of Artificial Intelligence on Dental Education: A review and guide for Curriculum Update. Education Sciences, 13(2), 150. https://doi.org/10.3390/educsci13020150
Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 15. https://doi.org/10.1186/s40561-023-00237-x
Tracy, R. (2023, April 11). Biden Administration Weighs Possible Rules for AI Tools Like ChatGPT - WSJ. The Wall Street Journal. https://www.wsj.com/articles/biden-administration-weighs-possible-rules-for-ai-tools-like-chatgpt-46f8257b
Twitter Inc (2023). About different types of Tweets. https://help.twitter.com/en/using-twitter/types-of-tweets
Ventayen, R. J. M. (2023). OpenAI ChatGPT Generated results: Similarity Index of Artificial Intelligence-Based contents. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4332664
Zhai, X. (2022). ChatGPT user experience: Implications for education. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4312418
Zhu, M., Liu, O. L., & Lee, H. S. (2020). The effect of automated feedback on revision behavior and learning gains in formative assessment of scientific argument writing. Computers & Education, 143, 103668. https://doi.org/10.1016/j.compedu.2019.103668
Acknowledgements
This study is based upon work supported by the National Science Foundation under grant no. 1928434.
Author information
Authors and Affiliations
Contributions
Lingyao Li: Conceptualization, Methodology, Data Curation, Formal Analysis, Writing - Original Draft, Writing - Review & Editing. Zihui Ma: Methodology, Data Curation, Formal Analysis, Writing - Original Draft, Writing - Review & Editing. Lizhou Fan: Methodology, Data Curation, Writing - Original Draft, Writing - Review & Editing. Sanggyu Lee: Writing - Original Draft, Writing - Review & Editing. Huizi Yu: Writing - Original Draft, Writing - Review & Editing. Libby Hemphill: Conceptualization, Funding Acquisition, Writing - Review & Editing, Supervision, Resources.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, L., Ma, Z., Fan, L. et al. ChatGPT in education: a discourse analysis of worries and concerns on social media. Educ Inf Technol 29, 10729–10762 (2024). https://doi.org/10.1007/s10639-023-12256-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10639-023-12256-9