An Algorithmic Toolbox for Network Calculus | Discrete Event Dynamic Systems Skip to main content
Log in

An Algorithmic Toolbox for Network Calculus

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

Network calculus offers powerful tools to analyze the performances in communication networks, in particular to obtain deterministic bounds. This theory is based on a strong mathematical ground, notably by the use of (min,+) algebra. However, the algorithmic aspects of this theory have not been much addressed yet. This paper is an attempt to provide some efficient algorithms implementing network calculus operations for some classical functions. Some functions which are often used are the piecewise affine functions which ultimately have a constant growth. As a first step towards algorithmic design, we present a class containing these functions and closed under the main network calculus operations (min, max, +, −, convolution, subadditive closure, deconvolution): the piecewise affine functions which are ultimately pseudo-periodic. They can be finitely described, which enables us to propose some algorithms for each of the network calculus operations. We finally analyze their computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal PK, Sharir M (1995a) Davenport–Schinzel sequences and their geometric applications. Cambridge Univ. Press

  • Agarwal PK, Sharir M (1995b) Davenport–Schinzel sequences and their geometric applications, Technical report DUKE-TR-1995-21. Department of Computer Science, Duke University

  • Attalah MJ (1985) Some dynamic computational geometry problems. Comput Math Appl 11: 1171–1181

    Article  MathSciNet  Google Scholar 

  • Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity. Wiley, Download from http://www.maxplus.org

  • Boissonat JD, Yvinec M (1998) Algorithmic geometry. Cambridge Univ. Press

  • Bouillard A (2005) Optimisation et analyse probabiliste de systèmes à événements discrets. PhD thesis, École Normale Supérieure de Lyon (in french)

  • Bouillard A, Thierry E (2007a) An algorithmic toolbox for network calculus, Technical report 6094. IRISA

  • Bouillard A, Thierry, E (2007b) Some examples and counterexamples for ( min, + ) filtering operations, Technical report 6095. IRISA

  • Chang CS (1999) Deterministic traffic specification via projections under the min-plus algebra. In: Proceedings of INFOCOM’99, pp 43–50

  • Chang CS (2000) Performance guarantees in communication networks. TNCS, Springer

  • COINC Project, INRIA (2006) COINC—computational issues in network calculus. ARC INRIA Project. http://perso.bretagne.ens-cachan.fr/~bouillar/coinc

  • Corduneanu C, Bohr H (1961) Almost periodic functions. Wiley

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press

  • Cottenceau B, Gruet B, Hardouin L, Lhommeau M (2007) Modèles et systèmes dynamiques, LISA, University of Angers, France. http://www.istia.univ-angers.fr/~hardouin/outils.html

  • CyNC (2007) A tool for performance analysis of complex real time systems. http://www.control.auc.dk/~henrik/CyNC

  • DISCO (2006) The DISCO network calculator. http://disco.informatik.uni-kl.de/content/Downloads, last modified: 11-02-2006

  • Fidler M, Recker S (2006) Conjugate network calculus: a dual approach applying the legendre transform. Elsevier Comput Netw J 50(8):1026–1039

    Article  MATH  Google Scholar 

  • Gaubert S (2007) MaxPlus project, INRIA, Rocquencourt, France. http://amadeus.inria.fr/gaubert/gaubert.html

  • Gaubert S (1992) Théorie Linéaire des Systèmes dans les Dioïdes. PhD thesis, École des mines de Paris. (in french)

  • Hershberger J (1989) Finding the upper envelope of n line segments in \(\mathcal{O}(n \log n)\) time. Inf Process Lett 33:169–174

    Article  MATH  MathSciNet  Google Scholar 

  • Klazar M (1999) On the maximum lengths of Davenport–Schinzel sequences. In: Contemporary trends in discrete mathematics, AMS, pp 169–178

  • Le Boudec J-Y, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the internet, LNCS 2050. Springer-Verlag

  • Nielsen F, Yvinec M (1998) An output-sensitive convex hull algorithm for planar objects. Int J Comput Geom Appl 8(1):39–66

    Article  MATH  MathSciNet  Google Scholar 

  • Oppenheim AV, Willsky AS, Nawab SH (1997) Signals and systems. Prentice-Hall

  • Pandit K (2006) Quality of service performance analysis based on network calculus. PhD thesis, Technische Universität Darmstadt

  • Pandit K, Kirchner C, Schmitt J, Steinmetz, R (2004a) Optimization of the min-plus convolution computation under network calculus constraints, Technical report TR-KOM-2004-04. Technische Universität Darmstadt

  • Pandit K, Schmitt J, Kirchner C, Steinmetz R (2004b) Optimal allocation of service curves by exploiting properties of the min-plus convolution, Technical report TR-KOM-2004-08. Technische Universität Darmstadt

  • Pandit K, Schmitt J, Kircher C, Steinmetz R (2006) A transform for network calculus and its application to multimedia networking. In: SPIE conference on multimedia computing and networking (MMCN’06)

  • Ramirez-Alfonsin JL (2005) The diophantine frobenius problem. Oxford Univ. Press

  • Rockfellar RT (1996) Convex analysis. Princeton Univ. Press

  • Schmitt JB, Zdarsky FA (2006) The disco network calculator: a toolbox for worst case analysis. In Proceedings of valuetools’06, ACM Press, p 8

  • Schmitt JB, Zdarsky FA, Martinovic I (2006) Performance bounds in feed-forward networks under blind multiplexing, Technical Report 349/06. University of Kaiserslautern, Germany

  • Schioler H, Nielsen JD, Larsen KG, Jessen JJ (2005) CyNC - a method for real time analysis of systems with cyclic data flows. In: Proceedings of 13th RTS conference on embedded systems ’05

  • Sylvester JJ (1884) “question 7382”. Mathematical questions from the educational times, 41:21

  • Wandeler E, Thiele L (2006) Real-time calculus (RTC) toolbox. http://www.mpa.ethz.ch/Rtctoolbox

  • Wandeler E (2006) Modular performance analysis and interface-based design for embedded real-time systems. PhD thesis, ETH Zurich, ETH Diss. No. 16819

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Bouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillard, A., Thierry, É. An Algorithmic Toolbox for Network Calculus. Discrete Event Dyn Syst 18, 3–49 (2008). https://doi.org/10.1007/s10626-007-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-007-0028-x

Keywords

Navigation