Abstract
The Figueroa planes are of particular interest as one of the few known families of non-translation projective planes. The Figueroa planes are constructed from the Desarguesian plane \({PG }(2,q^3)\) by replacing the lines of \({PG }(2,q^3)\) with a new set of lines. This article presents a new geometric construction of the Figueroa plane of order \(q^3\) for q a prime power, \(q>2\), \(q\not \equiv 1\pmod 3\). The construction uses \(\mathbb {F}_{q}\)-conics of \({PG }(2,q^3)\).
Similar content being viewed by others
References
Biliotti M., Montinaro A.: On the rigidity of the Figueroa replacement in PG(2, q\(^3\)). Combinatorica 37, 375–395 (2017).
Biliotti M., Montinaro A.: A characterization of the desarguesian and the Figueroa planes of order \(q^3\). J. Algebr. Comb. series 48, 549–563 (2018).
Brown J.M.N.: On constructing finite projective planes from groups. ARS Comb. 16, 61–85 (1983).
Brown J.M.N.: A construction of infinite subplane lattices of Figueroa planes. In: Proceedings of the 3rd Congress of Geometry, vol. 122 (1991).
Brown J.M.N.: A remark on a construction of Grundhöfer. Bull. Belg. Math. Soc. 5, 181–185 (1998).
Brown J.M.N.: Nonexistence of certain Fano subplanes of Figueroa planes. Bull. Belg. Math. Soc. 12, 675–684 (2005).
Brown J.M.N.: Some partitions in Figueroa planes. Note di Matematica 29(suppl 1), 33–44 (2009).
Caliskan C., Petrak B.: Subplanes of order 3 in Figueroa planes. Finite Fields Appl. 20, 24–29 (2013).
Casse L.R.A.: Projective Geometry: An Introduction. Oxford University Press, Oxford (2006).
Dempwolff U.: A note on the Figueroa planes. Arch. Math. (Basel) 43, 285–288 (1984).
Dempwolff U.: PSL(3, q) on projective planes of order \(q^3\). Geom. Dedicata 18, 101–112 (1985).
Figueroa R.: A family of not \((V, l)\)-transitive projective planes of order \(q^3\), \(q {\lnot \equiv } 1\) (mod 3) and \(q > 2\). Math. Z. 181, 471–479 (1982).
Francot E., Montinaro A., Rizzo P.: A new characterization of the desarguesian and the Figueroa plane. Finite Fields Appl. 60, 101580 (2019).
Grundhöfer T.: A synthetic construction of the Figueroa planes. J. Geom. 26, 191–201 (1986).
Hering C., Schaeffer H.-J.: On the new projective planes of R. Figueroa. In Jungnickel, et al., (eds.) Combinatorial Theory, Proc. Schloss Rauischholzhausen 1982, pp. 187–190. Springer, Berlin (1982).
Petrak B.: Fano subplanes in finite Figueroa planes. J. Geom. 99, 101–106 (2010).
Acknowledgements
A.M.W. Hui acknowledges the support of National Natural Science Foundation of China (Grant No. 12071041).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by K. Metsch.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Barwick, S.G., Hui, A.M.W. & Jackson, WA. A geometric description of the Figueroa plane. Des. Codes Cryptogr. 91, 1581–1593 (2023). https://doi.org/10.1007/s10623-022-01158-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-022-01158-5