A geometric description of the Figueroa plane | Designs, Codes and Cryptography Skip to main content
Log in

A geometric description of the Figueroa plane

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The Figueroa planes are of particular interest as one of the few known families of non-translation projective planes. The Figueroa planes are constructed from the Desarguesian plane \({PG }(2,q^3)\) by replacing the lines of \({PG }(2,q^3)\) with a new set of lines. This article presents a new geometric construction of the Figueroa plane of order \(q^3\) for q a prime power, \(q>2\), \(q\not \equiv 1\pmod 3\). The construction uses \(\mathbb {F}_{q}\)-conics of \({PG }(2,q^3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Biliotti M., Montinaro A.: On the rigidity of the Figueroa replacement in PG(2, q\(^3\)). Combinatorica 37, 375–395 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  2. Biliotti M., Montinaro A.: A characterization of the desarguesian and the Figueroa planes of order \(q^3\). J. Algebr. Comb. series 48, 549–563 (2018).

    Article  MATH  Google Scholar 

  3. Brown J.M.N.: On constructing finite projective planes from groups. ARS Comb. 16, 61–85 (1983).

    MathSciNet  MATH  Google Scholar 

  4. Brown J.M.N.: A construction of infinite subplane lattices of Figueroa planes. In: Proceedings of the 3rd Congress of Geometry, vol. 122 (1991).

  5. Brown J.M.N.: A remark on a construction of Grundhöfer. Bull. Belg. Math. Soc. 5, 181–185 (1998).

    MathSciNet  MATH  Google Scholar 

  6. Brown J.M.N.: Nonexistence of certain Fano subplanes of Figueroa planes. Bull. Belg. Math. Soc. 12, 675–684 (2005).

    MathSciNet  MATH  Google Scholar 

  7. Brown J.M.N.: Some partitions in Figueroa planes. Note di Matematica 29(suppl 1), 33–44 (2009).

    MathSciNet  MATH  Google Scholar 

  8. Caliskan C., Petrak B.: Subplanes of order 3 in Figueroa planes. Finite Fields Appl. 20, 24–29 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. Casse L.R.A.: Projective Geometry: An Introduction. Oxford University Press, Oxford (2006).

    MATH  Google Scholar 

  10. Dempwolff U.: A note on the Figueroa planes. Arch. Math. (Basel) 43, 285–288 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. Dempwolff U.: PSL(3, q) on projective planes of order \(q^3\). Geom. Dedicata 18, 101–112 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. Figueroa R.: A family of not \((V, l)\)-transitive projective planes of order \(q^3\), \(q {\lnot \equiv } 1\) (mod 3) and \(q > 2\). Math. Z. 181, 471–479 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  13. Francot E., Montinaro A., Rizzo P.: A new characterization of the desarguesian and the Figueroa plane. Finite Fields Appl. 60, 101580 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. Grundhöfer T.: A synthetic construction of the Figueroa planes. J. Geom. 26, 191–201 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hering C., Schaeffer H.-J.: On the new projective planes of R. Figueroa. In Jungnickel, et al., (eds.) Combinatorial Theory, Proc. Schloss Rauischholzhausen 1982, pp. 187–190. Springer, Berlin (1982).

  16. Petrak B.: Fano subplanes in finite Figueroa planes. J. Geom. 99, 101–106 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A.M.W. Hui acknowledges the support of National Natural Science Foundation of China (Grant No. 12071041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice M. W. Hui.

Additional information

Communicated by K. Metsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barwick, S.G., Hui, A.M.W. & Jackson, WA. A geometric description of the Figueroa plane. Des. Codes Cryptogr. 91, 1581–1593 (2023). https://doi.org/10.1007/s10623-022-01158-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01158-5

Keywords

Mathematics Subject Classification

Navigation