On near–MDS codes and caps | Designs, Codes and Cryptography Skip to main content
Log in

On near–MDS codes and caps

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Several classes of near-MDS sets of \(\mathrm{PG}(3, q)\) are described. They are obtained either by considering the intersection of an elliptic quadric ovoid and a Suzuki-Tits ovoid of a symplectic polar space \(\mathcal {W}(3, q)\) or starting from the \(q+1\) points of a twisted cubic of \(\mathrm{PG}(3, q)\). As a by-product two classes of complete caps of \(\mathrm{PG}(4, q)\) of size \(2q^2-q\pm \sqrt{2q}+2\) are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo V., Larato B.: Near-MDS codes arising from algebraic curves. Discret. Math. 301, 5–19 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguglia A., Giuzzi L., Sonnino A.: Near-MDS codes from elliptic curves. Des. Codes Cryptogr. 89, 965–972 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagchi B., Sastry N.: Intersection pattern of the classical ovoids in symplectic \(3\)-space of even order. J. Algebra 126, 147–160 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartoli D., Marcugini S., Pambianco F.: On the completeness of plane cubic curves over finite fields. Des. Codes Cryptogr. 83, 233–267 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bierbrauer J., Edel Y.: A family of caps in projective \(4\)-space in odd characteristic. Finite Fields Appl. 6(4), 283–293 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosma W.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 25–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown M.R.: Ovoids of \({{\rm PG}}(3, q)\), \(q\) even, with a conic section. J. Lond. Math. Soc. 62(2), 569–582 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodunekov S., Landgew I.: On near-MDS codes. J. Geom. 54, 30–43 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. Edel Y., Bierbrauer J.: A family of caps in projective \(4\)-space in characteristic \(2\). Congr. Numer. 141, 191–202 (1999).

    MathSciNet  MATH  Google Scholar 

  10. Edel Y., Bierbrauer J.: Caps of order \(3q^2\) in affine \(4\)-space in characteristic \(2\). Finite Fields Appl. 10(2), 168–182 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabidulin E.M., Davydov A.A., Tombak L.M.: Linear codes with covering radius \(2\) and other new covering codes. IEEE Trans. Inform. Theory 37, 219–224 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. Giulietti M.: On the Extendibility of Near-MDS Elliptic Codes. Appl. Algebra Eng. Commun. Comput. 15, 1–11 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Giulietti M.: The geometry of covering codes: small complete caps and saturating sets in Galois spaces, Surveys in combinatorics 2013, 51–90. London Math. Soc. Lecture Note Ser., 409, Cambridge Univ. Press, Cambridge, (2013).

  14. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Science Publications, Oxford (1985).

    MATH  Google Scholar 

  15. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Science Publications, Oxford (1998).

    MATH  Google Scholar 

  16. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Monographs in Mathematics. Springer, London (2016).

    Book  MATH  Google Scholar 

  17. Penttila T., Williams B.: Ovoids of parabolic spaces. Geom. Dedicata 82, 1–19 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. Tallini G.: Calotte complete di \(S_{4, q}\) contenenti due quadriche ellittiche quali sezioni iperpiane. Rend. Mat. Pura Appl. 23, 108–123 (1964).

    MATH  Google Scholar 

  19. Wang Q., Heng Z.: Near MDS codes from oval polynomials. Discret. Math. 112277, 344 (2021).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM). The authors would like to thank one of the anonymous referees for the valuable suggestions and remarks and D. Bartoli and M. Giulietti for fruitful discussions concerning elliptic curves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pavese.

Additional information

Communicated by I. Landjev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceria, M., Cossidente, A., Marino, G. et al. On near–MDS codes and caps. Des. Codes Cryptogr. 91, 1095–1110 (2023). https://doi.org/10.1007/s10623-022-01141-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01141-0

Keywords

Mathematics Subject Classification

Navigation