About r-primitive and k-normal elements in finite fields | Designs, Codes and Cryptography
Skip to main content

About r-primitive and k-normal elements in finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In 2013, Huczynska, Mullen, Panario and Thomson introduced the concept of k-normal elements: an element \(\alpha \in {\mathbb {F}}_{q^n}\) is k-normal over \({\mathbb {F}}_q\) if the greatest common divisor of the polynomials \(g_{\alpha }(x)= \alpha x^{n-1}+\alpha ^qx^{n-2}+\cdots +\alpha ^{q^{n-2}}x+\alpha ^{q^{n-1}}\) and \(x^n-1\) in \({\mathbb {F}}_{q^n}[x]\) has degree k, generalizing the concept of normal elements (normal in the usual sense is 0-normal). In this paper we discuss the existence of r-primitive k-normal elements in \({\mathbb {F}}_{q^n}\) over \({\mathbb {F}}_{q}\), where an element \(\alpha \in {\mathbb {F}}_{q^n}^*\) is r-primitive if its multiplicative order is \(\frac{q^n-1}{r}\). We provide many general results about the existence of this class of elements and we work a numerical example over finite fields of characteristic 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguirre J.J.R., Neumann V.G.L.: Existence of primitive 2-normal elements in finite fields. Finite Fields Appl. 73, 101864 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  2. Carvalho C., Guardieiro J.P., Neumann V.G.L., Tizziotti G.: On the existence of pairs of primitive and normal elements over finite fields. Bull. Braz. Math. Soc. 53, 677–699 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen S.D., Huczynska S.: The primitive normal basis theorem without a computer. J. Lond. Math. Soc. 67, 41–56 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. Fu L., Wan D.Q.: A class of incomplete character sums. Quart. J. Math. 65, 1195–1211 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. Gupta A., Sharma R.K., Cohen S.D.: Primitive element pairs with one prescribed trace over a finite field. Finite Fields Appl. 54, 1–14 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  6. Hachenberger R., Jungnickel D.: Topics in Galois Fields. Springer, Cham (2020).

    Book  MATH  Google Scholar 

  7. Huczynska S., Mullen G.L., Panario D., Thomson D.: Existence and properties of k-normal elements over finite fields. Finite Fields Appl. 24, 170–183 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. Lenstra H.W., Schoof R.: Primitive normal bases for finite fields. Math. Comput. 48, 217–231 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  10. Reis L.: Existence results on \(k\)-normal elements over finite fields. Rev. Math. Iberoam. 35(3), 805–822 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. Reis L., Thompson D.: Existence of primitive \(1\)-normal elements in finite fields. Finite Fields Appl. 51, 238–269 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), https://www.sagemath.org, 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. L. Neumann.

Additional information

Communicated by D. Panario.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, J.J.R., Carvalho, C. & Neumann, V.G.L. About r-primitive and k-normal elements in finite fields. Des. Codes Cryptogr. 91, 115–126 (2023). https://doi.org/10.1007/s10623-022-01101-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01101-8

Keywords

Mathematics Subject Classification