Abstract
Projective Reed-Muller codes are obtained by evaluating homogeneous polynomials of degree d in \({\mathbb {F}}_q[X_0, \ldots , X_n]\) on the points of a projective space of dimension n defined over a finite field \({\mathbb {F}}_q\). They were introduced by Lachaud, in 1986, and their minimum distance was determined by Serre and Sørensen. As for the higher Hamming weights, contributions were made by Rodier, Sboui, Ballet and Rolland, mostly for the case where \(d < q\). In 2016 we succeeded in determining all next-to-minimal weights when \(q = 2\), and in 2018 we determined all next-to-minimal weights for \(q = 3 \), and almost all of these weights for the case where \(q \ge 4\). In the present paper we determine some of the missing next-to-minimal weights of projective Reed-Muller codes when \(q \ge 4\). Our proofs combine results of geometric nature with techniques from Gröbner basis theory.
Similar content being viewed by others
References
Ballet S., Rolland R.: On low weight codewords of generalized affine and projective Reed-Muller codes. Des. Codes Cryptogr. 73(2), 271–297 (2014).
Becker T., Weispfenning V.: Gröbner Bases—A computational approach to commutative algebra. Springer 2nd. pr., Berlin (1998).
Carvalho C., Neumann V.G.L.: The Next-to-Minimal Weights of Binary Projective Reed-Muller Codes. IEEE Trans. Inform. Theory 62(11), 6300–6303 (2016).
Carvalho C., Neumann V.G.L.: On the next-to-minimal weight of affine cartesian codes. Finite Fields Appl. 44, 113–134 (2017).
Carvalho C., Neumann V.G.L.: On the next-to-minimal weight of projective Reed-Muller codes. Finite Fields Appl. 50, 382–390 (2018).
Carvalho, C., Neumann V.G.L.: An extension of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords to a class of Reed-Muller type codes. To appear in Integrable systems and algebraic geometry, London Mathematical Society Lecture Note Series, Cambrige University Press.
Delsarte P., Goethals J.M., Mac Williams F.J.: On generalized Reed-Muller codes and their relatives. Inform. Control 16, 403–442 (1970).
Cox D., Little J., O’Shea D.: Ideals, Varieties and Algorithms, 3rd edn. Springer, New York (2007).
Rolland R.: The second weight of generalized Reed-Muller codes in most cases. Cryptogr. Commun. 2, 19–40 (2010).
Kasami T., Lin S., Peterson W.W.: New generalisations of the Reed-Muller codes. Part I: Primitive codes. IEEE Trans. Inform. Theory 2, 189–199 (1968).
Lachaud G.: Projective Reed-Muller codes. Coding theory and applications (Cachan, 1986). Lecture Notes in Comput. Sci. 311, 125–129 (1988).
Mercier D.J., Rolland R.: Polynômes homogènes qui s’annulent sur l’espace projectif \({\mathbb{P}}^m({{\mathbb{F}}_q} )\). J. Pure Appl. Algebra 124, 227–240 (1998).
Morelos-Zaragoza R.H.: The Art of Error Correcting Coding, 2nd edn. Wiley, New York (2006).
Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Comm. Algebra 25(2), 401–413 (1997).
Serre J.-P.: Lettre à M. Tsfasman du 24 Juillet 1989. In: Journées arithmétiques de Luminy 17–21 Juillet 1989, Astérisque, 198–200. Société Mathématique de France (1991).
Sørensen A.: Projective Reed-Muller codes. IEEE Trans. Inform. Theory 37(6), 1567–1576 (1991).
Tomlinson M., Tjhai C., Ambrose M., Ahmed M., Jibril M.: Error-correction coding and decoding. SpringerOpen, (2017).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Korchmaros.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Cícero Carvalho and Victor Neumann were partially supported by Grants from CNPq and FAPEMIG.
Rights and permissions
About this article
Cite this article
Carvalho, C., Neumann, V.G.L. Towards the Complete Determination of Next-to-Minimal Weights of Projective Reed-Muller Codes. Des. Codes Cryptogr. 89, 301–315 (2021). https://doi.org/10.1007/s10623-020-00821-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00821-z