Wide-sense 2-frameproof codes | Designs, Codes and Cryptography Skip to main content
Log in

Wide-sense 2-frameproof codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Various kinds of fingerprinting codes and their related combinatorial structures are extensively studied for protecting copyrighted materials. This paper concentrates on one specialised fingerprinting code named wide-sense frameproof codes in order to prevent innocent users from being framed. Let Q be a finite alphabet of size q. Given a t-subset \(X=\{ x ^1,\ldots , x ^t \}\subseteq Q^n\), a position i is called undetectable for X if the values of the words of X match in their ith position: \(x_i^1=\cdots =x_i^t\). The wide-sense descendant set of X is defined by \({{\text {wdesc}}}(X)=\{y\in Q^n:y_i=x_i^1,i\in {U}(X)\},\) where U(X) is the set of undetectable positions for X. A code \(\mathcal{C}\subseteq Q^n\) is called a wide-sense t-frameproof code if \({{\text {wdesc}}}(X) \cap \mathcal{C} = X\) for all \(X \subseteq \mathcal{C}\) with \(|X| \le t\). The paper improves the upper bounds on the sizes of wide-sense 2-frameproof codes by applying techniques on non 2-covering Sperner families and intersecting families in extremal set theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N., Fischer E., Szegedy M.: Parent-identifying codes. J. Comb. Theory A 95(2), 349–359 (2001).

    Article  MathSciNet  Google Scholar 

  2. Anderson I.: Combinatorics of Finite Sets, Dover Publications. INC, Mineola (1987).

    Google Scholar 

  3. Barg A., Blakley G.R., Kabatiansky G.A.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4), 852–865 (2003).

    Article  MathSciNet  Google Scholar 

  4. Barg A., Cohen G., Encheva S., Kabatiansky G., Zémor G.: A hypergraph approach to the identifying parent property: the case of multiple parents. SIAM J. Discret. Math. 14(3), 423–431 (2001).

    Article  MathSciNet  Google Scholar 

  5. Blackburn S.R.: An upper bound on the size of a code with the \(k\)-identifiable parent property. J. Comb. Theory A 102(1), 179–185 (2003).

    Article  MathSciNet  Google Scholar 

  6. Blackburn S.R.: Combinatorial schemes for protecting digital content, surveys in combinatorics, In: C.D. Wensley (ed.), London Mathematical Society Lecture Note Series, vol. 307, pp. 43-78. Cambridge University Press, Cambridge (2003).

  7. Blackburn S.R.: Frameproof codes. SIAM J. Discret. Math. 16(3), 499–510 (2003).

    Article  MathSciNet  Google Scholar 

  8. Blackburn S.R., Etzion T., Ng S.-L.: Traceability codes. J. Comb. Theory A 117(8), 1049–1057 (2010).

    Article  MathSciNet  Google Scholar 

  9. Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998).

    Article  MathSciNet  Google Scholar 

  10. Chee Y.: Tur\(\acute{a}\)n-Type Problems in Group Testing, Coding Theory and Cryptography. Department of Computer Science, University of Waterloo, Waterloo (1996).

    Google Scholar 

  11. Chee Y., Zhang X.: Improved constructions of frameproof codes. IEEE Trans. Inf. Theory 58(8), 5449–5453 (2012).

    Article  MathSciNet  Google Scholar 

  12. Cheng M., Miao Y.: On anti-collusion codes and detection algorithms for multimedia fingerprinting. IEEE Trans. Inf. Theory 57(7), 4843–4851 (2011).

    Article  MathSciNet  Google Scholar 

  13. Chor B., Fiat A., Naor M.: Tracing traitors. In: Y.G. Desmedt (ed.) Advances in Cryptology-CRYPTO’94. Lecture Notes in Computer Science, vol. 839, pp. 257–270. Springer, Berlin (1994).

  14. Cohen G., Encheva S.: Efficient constructions of frameproof codes. Electron. Lett. 36(22), 1840–1842 (2000).

    Article  Google Scholar 

  15. Engel K.: Sperner Theory (Encyclopedia of Mathematics and Its Applications Book). Cambridge University Press, Cambridge (1997).

    Google Scholar 

  16. Fiat A., Tassa T.: Dynamic traitor tracing. J. Cryptol. 14(3), 211–223 (2001).

    Article  MathSciNet  Google Scholar 

  17. Guo C., Stinson D.R., Van Trung T.: On tight bounds for binary frameproof codes. Des. Codes Cryptogr. 77(2–3), 301–319 (2015).

    Article  MathSciNet  Google Scholar 

  18. Jukna S.: Extremal Combinatorics: With Applications in Computer Science, 2nd edn. Springer, Berlin (2011).

    Book  Google Scholar 

  19. Katona G.O.H.: Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung. 15(3), 329–337 (1964).

    Article  MathSciNet  Google Scholar 

  20. Milner E.C.: A combinatorial theorem on systems of sets. J. Lond. Math. Soc. s1–43(1), 204–206 (1968).

    Article  MathSciNet  Google Scholar 

  21. Panoui A.: Wide-Sense Fingerprinting Codes and Honeycomb Arrays. Royal Holloway, University of London, Egham (2012).

    Google Scholar 

  22. Shangguan C., Ma J., Ge G.: New upper bounds for parent-identifying codes and traceability codes. Des. Codes Cryptogr. 86(8), 1727–1737 (2018).

    Article  MathSciNet  Google Scholar 

  23. Shangguan C., Wang X., Ge G., Miao Y.: New bounds for frameproof codes. IEEE Trans. Inf. Theory 63(11), 7247–7252 (2017).

    Article  MathSciNet  Google Scholar 

  24. Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).

    Article  MathSciNet  Google Scholar 

  25. Stinson D.R., van Trung T., Wei R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Stat. Plan. Inference 86(2), 595–617 (2000).

    Article  MathSciNet  Google Scholar 

  26. Stinson D.R., Wei R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discret. Math. 11, 41–53 (1998).

    Article  MathSciNet  Google Scholar 

  27. Stinson D.R., Wei R., Chen K.: On generalized separating hash families. J. Comb. Theory A 115(1), 105–120 (2008).

    Article  MathSciNet  Google Scholar 

  28. Van Trung T.: A tight bound for frameproof codes viewed in terms of separating hash families. Des. Codes Cryptogr. 72(3), 713–718 (2014).

    Article  MathSciNet  Google Scholar 

  29. Xing C.: Asymptotic bounds on frameproof codes. IEEE Trans. Inf. Theory 48(11), 2991–2995 (2002).

    Article  MathSciNet  Google Scholar 

  30. Yang Y., Zhang Y., Ge G.: New lower bounds for secure codes and related hash families: a hypergraph theoretical approach. IEEE Trans. Inf. Theory 63(4), 2446–2453 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and valuable suggestions, which have greatly improved the presentation and quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Zhou.

Additional information

Communicated by J. D. Key.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC Grants 11571034 and 11971053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhou, W. Wide-sense 2-frameproof codes. Des. Codes Cryptogr. 88, 2507–2519 (2020). https://doi.org/10.1007/s10623-020-00797-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00797-w

Keywords

Mathematics Subject Classification

Navigation