Doubly resolvable Steiner quadruple systems of orders $$2^{2n+1}$$ | Designs, Codes and Cryptography Skip to main content
Log in

Doubly resolvable Steiner quadruple systems of orders \(2^{2n+1}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A t-\((v,k,\lambda )\) design is a pair \((X,\mathcal{B})\), where X is a v-element set and \(\mathcal{B}\) is a set of k-subsets of X, called blocks, with the property that every t-subset of X is contained in exactly \(\lambda \) blocks. A t-\((v,k,\lambda )\) design \((X,\mathcal{B})\) is said to be \((s,\mu )\)-resolvable if \(\mathcal{B}\) can be partitioned into \(\mathcal{B}_1|\cdots |\mathcal{B}_c\) such that each \((X,\mathcal{B}_i)\) is an s-\((v,k,\mu )\) design, further, if each \((X,\mathcal{B}_i)\) is also \((r,\nu )\)-resolvable, then such an \((s,\mu )\)-resolvable t-design is called \((s,\mu )(r,\nu )\)-doubly resolvable. In 1980, Hartman constructed a (2, 3)(1, 1)-doubly resolvable 3-(v, 4, 1) design for \(v\in \{20,32,44,68,80,104\}\) and a (2, 3)-resolvable 3-\((2^7,4,1)\) design. In this paper, we construct (2, 3)(1, 1)-doubly resolvable 3-\((2^{2n+1},4,1)\) designs for all positive integers n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Ge G., Yin J.: Resolvable and near-resolvable designs. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbokk of Combinatorial Designs, pp. 124–132. CRC Press, Boca Raton (2007).

    Google Scholar 

  2. Baker R.D.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discret. Math. 15, 205–211 (1976).

    Article  Google Scholar 

  3. Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952).

    Article  MathSciNet  Google Scholar 

  4. Chang Y., Zhou J.: Large sets of Kirkman triple systems and related designs. J. Comb. Theory (A) 120, 649–670 (2013).

    Article  MathSciNet  Google Scholar 

  5. Chouinard L.G.: Patitions of the 4-subsets of a 13-set into disjoint projective planes. Discret. Math. 45, 297–300 (1983).

    Article  MathSciNet  Google Scholar 

  6. Ge G., Miao Y.: PBDs, frames, and resolvability. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbokk of Combinatorial Designs, pp. 261–265. CRC Press, Boca Raton (2007).

    Google Scholar 

  7. Hanani H.: On quadruple systems. Can. J. Math. 12, 145–157 (1960).

    Article  MathSciNet  Google Scholar 

  8. Hartman A.: Doubly and orthogonally resolvable quadruple systems. In: Robinson R.W., Southern G.W., Wallis W.D. (eds.) Combinatorial Mathematics. VII. Lect. Notes Math., vol. 829, pp. 157–164. Springer, New York (1980).

    Google Scholar 

  9. Hartman A.: The existence of resolvable Steiner quadruple systems. J. Comb. Theory (A) 44, 182–206 (1987).

    Article  MathSciNet  Google Scholar 

  10. Hartman A.: The fundamental construction for 3-designs. Discret. Math. 124, 107–132 (1994).

    Article  MathSciNet  Google Scholar 

  11. Hartman A., Phelps K.T.: Steiner quadruple systems. In: Dinitz J.H., Stinson D.R. (eds.) Contemporary Design Theory, pp. 205–240. Wiley, New York (1992).

    Google Scholar 

  12. Ji L.: A complete solution to existence of H designs. J. Comb. Des. 27, 75–81 (2019).

    Article  MathSciNet  Google Scholar 

  13. Ji L., Zhu L.: Resolvable Steiner quadruple systems for the last 23 orders. SIAM J. Discret. Math. 19, 420–430 (2005).

    Article  MathSciNet  Google Scholar 

  14. Ji L., Yin J.: Constructions of new orthogonal arrays and covering arrays of strength three. J. Comb. Theory (A) 117, 236–247 (2010).

    Article  MathSciNet  Google Scholar 

  15. Lei J.: On large sets of Kirkman systems with holes. Discret. Math. 254, 259–274 (2002).

    Article  MathSciNet  Google Scholar 

  16. Lu J.X.: On large sets of disjoint Steiner triple systems I, II, and III. J. Comb. Theory (A) 34, 140–146, 147–155, and 156–182 (1983).

  17. Lu J.X.: On large sets of disjoint Steiner triple systems IV, V, and VI. J. Comb. Theory (A), 37, 136–163, 164–188, and 189–192 (1984).

  18. Mills W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990).

    MathSciNet  MATH  Google Scholar 

  19. Teirlinck L.: A completion of Lu’s determination of the spectrum of large sets of disjoint Steiner triple systems. J. Comb. Theory (A) 57, 302–305 (1991).

    Article  MathSciNet  Google Scholar 

  20. Teirlinck L.: Some new 2-resolvable Steiner quadruple systems, Des. Des. Codes Cryptogr. 4, 5–10 (1994).

    Article  MathSciNet  Google Scholar 

  21. Wilson R.M.: An existence theory for pairwise balanced designs I: composition theorems and morphisms. J. Comb. Theory (A) 13, 220–245 (1972).

    Article  MathSciNet  Google Scholar 

  22. Wilson R.M.: An existence theory for pairwise balanced designs II: the structure of PBD-closed sets and the existence conjecture. J. Comb. Theory (A) 13, 246–273 (1972).

    Article  MathSciNet  Google Scholar 

  23. Zaicev G.V., Zinoviev V.A., Semakov N.V.: Interrelation of preparata and hamming codes and extension of hamming codes to new double-error-correcting codes. In: Proceedings of the Second International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, Adadémiai Kiadó, Budapest, pp. 257–263 (1973).

Download references

Acknowledgements

The authors would like to thank the referees for many helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Ji.

Additional information

Communicated by L. Teirlinck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by NSFC Grants 11701303 (J. Bao), 11871363 (L. Ji).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Bao, J. & Ji, L. Doubly resolvable Steiner quadruple systems of orders \(2^{2n+1}\). Des. Codes Cryptogr. 88, 2377–2386 (2020). https://doi.org/10.1007/s10623-020-00788-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00788-x

Keywords

Mathematics Subject Classification

Navigation