Abstract
In this paper, we first study biplanes \(\mathcal {D}\) with parameters (v, k, 2), where the block size \(k\in \{13,16\}\). These are the smallest parameter values for which a classification is not available. We show that if \(k=13\), then either \(\mathcal {D}\) is the Aschbacher biplane or its dual, or \(\mathbf {Aut}(\mathcal {D})\) is a subgroup of the cyclic group of order 3. In the case where \(k=16\), we prove that \(|\mathbf {Aut}(\mathcal {D})|\) divides \(2^{7}\cdot 3^{2}\cdot 5\cdot 7\cdot 11\cdot 13\). We also provide an example of a biplane with parameters (16, 6, 2) with a flag-transitive and point-primitive subgroup of automorphisms preserving a homogeneous cartesian decomposition. This motivated us to study biplanes with point-primitive automorphism groups preserving a cartesian decomposition. We prove that such an automorphism group is either of affine type (as in the example), or twisted wreath type.
Similar content being viewed by others
References
Andreescu T., Andrica D.: Quadratic Diophantine Equations. Developments in MathematicsSpringer, New York (2015). https://doi.org/10.1007/978-0-387-54109-9. With a foreword by Preda Mihăilescu.
Arasu K.T., Mavron V.C.: Biplanes and Singer Groups. In: Jungnickel D., Vanstone S.A. (eds.) Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), pp. 111–119. Wiley, New York (1993).
Aschbacher M.: On collineation groups of symmetric block designs. J. Combinatorial Theory Ser. A 11, 272–281 (1971). https://doi.org/10.1016/0097-3165(71)90054-9.
Assmus Jr. E.F., Salwach C.J.: The \((16,\,6,\,2)\) designs. Internat. J. Math. Math. Sci. 2(2), 261–281 (1979). https://doi.org/10.1155/S0161171279000247.
Assmus Jr., E.F., Mezzaroba, J.A., Salwach, C.J.: Planes and biplanes. In: Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci. 31, 205–212 (1977)
Betten A., Delandtsheer A., Niemeyer A.C., Praeger C.E.: On a theorem of Wielandt for finite primitive permutation groups. J. Group Theory 6(4), 415–420 (2003). https://doi.org/10.1515/jgth.2003.029.
Block R.E.: On the orbits of collineation groups. Math. Z. 96, 33–49 (1967).
Burau W.: Über die zur Kummerkonfiguration analogen Schemata von 16 Punkten und 16 Blöcken und ihre Gruppen. Abh. Math. Sem. Univ. Hamburg 26, 129–144 (1963). https://doi.org/10.1007/BF02992783.
Camina A.R.: Projective planes with a transitive automorphism group. Innov. Incidence Geom. 1, 191–196 (2005).
Camina A.R., Neumann P.M., Praeger C.E.: Alternating groups acting on finite linear spaces. Proc. Lond. Math. Soc. (3) 87(1), 29–53 (2003). https://doi.org/10.1112/S0024611503014060.
Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray
Denniston R.H.F.: On biplanes with \(56\) points. Ars Combin. 9, 167–179 (1980).
Dixon J.D., Mortimer B.: Permutation groups. In: Dixon J.D., Mortimer B. (eds.) Graduate Texts in Mathematics. Springer, New York (1996).
Essert M., Marangunić L.: Biplanes \((56,11,2)\) with a fixed-point-free involutory automorphism. Glas. Mat. Ser. III 40(60)(1), 1–11 (2005). https://doi.org/10.3336/gm.40.1.01.
Gill N.: Transitive projective planes. Adv. Geom. 7(4), 475–528 (2007). https://doi.org/10.1515/ADVGEOM.2007.030.
Gill N.: Transitive projective planes and insoluble groups. Trans. Am. Math. Soc. 368(5), 3017–3057 (2016). https://doi.org/10.1090/tran/6366.
Gorenstein D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980).
Hall Jr. M., Lane R., Wales D.: Designs derived from permutation groups. J. Combin. Theory 8, 12–22 (1970).
Hughes D., Piper F.: Design Theory. Up (Methuen). Cambridge University Press, Cambridge (1988).
Husain Q.M.: On the totality of the solutions for the symmetrical incomplete block designs: \(\lambda =2, k=5\) or \(6\). Sankhyā 7, 204–208 (1945).
Hussain Q.M.: Symmetrical incomplete block designs with \(\lambda =2\), \(k=8\) or \(9\). Bull. Calcutta Math. Soc. 37, 115–123 (1945).
Janko Z., Trung T.V.: A new biplane of order \(9\) with a small automorphism group. J. Combin. Theory Ser. A 42(2), 305–309 (1986). https://doi.org/10.1016/0097-3165(86)90103-2.
Kantor W.M.: \(2\)-transitive symmetric designs. Trans. Amer. Math. Soc. 146, 1–28 (1969). https://doi.org/10.2307/1995157.
Kantor W.M.: Primitive permutation groups of odd degree, and an application to finite projective planes. J. Algebra 106(1), 15–45 (1987). https://doi.org/10.1016/0021-8693(87)90019-6.
Kaski P., Östergård P.R.J.: There are exactly five biplanes with \(k=11\). J. Combin. Des. 16(2), 117–127 (2008). https://doi.org/10.1002/jcd.20145.
Key, J.D., Tonchev, V.D.: Computational results for the known biplanes of order \(9\). In: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., vol. 245, pp. 113–122. Cambridge Univ. Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511526114.011
Lander, E.S.: Symmetric designs: an algebraic approach. In: London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983). https://doi.org/10.1017/CBO9780511662164
Liebeck M.W., Praeger C.E., Saxl J.: On the O’Nan–Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc. Ser. A 44(3), 389–396 (1988).
Marangunić L.: Biplanes \((79,13,2)\) with involutory automorphism. J. Combin. Theory Ser. A 61(1), 36–49 (1992). https://doi.org/10.1016/0097-3165(92)90051-U.
O’Reilly-Regueiro E.: On primitivity and reduction for flag-transitive symmetric designs. J. Combin. Theory Ser. A 109(1), 135–148 (2005). https://doi.org/10.1016/j.jcta.2004.08.002.
Praeger C.E.: The inclusion problem for finite primitive permutation groups. Proc. Lond. Math. Soc. (3) 60(1), 68–88 (1990). https://doi.org/10.1112/plms/s3-60.1.68.
Praeger, C.E., Schneider, C.: Permutation groups and Cartesian decompositions. In: London Mathematical Society Lecture Note Series, vol. 449. Cambridge University Press, Cambridge (2018). https://doi.org/10.1017/9781139194006
Salwach C.J., Mezzaroba J.A.: The four known biplanes with \(k=9\). J. Combin. Theory Series A 24, 141–145 (1978).
Salwach C.J., Mezzaroba J.A.: The four known biplanes with \(k=11\). Internat. J. Math. Math. Sci. 2(2), 251–260 (1979). https://doi.org/10.1155/S0161171279000235.
The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.7.9 (2015). http://www.gap-system.org
Wong W.J.: Determination of a class of primitive permutation groups. Math. Z. 99, 235–246 (1967). https://doi.org/10.1007/BF01112454.
Acknowledgements
The work in the paper forms part of Australian Research Council Discovery Project Grant DP200100080. All authors thank the referees for a careful reading of the paper. The first and second authors are also grateful to Cheryl E. Praeger and Alice Devillers for supporting their visit to The University of Western Australia during July-September 2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Dedicated to the memory of our friend and colleague Jan Saxl.
Communicated by V. D. Tonchev.
Rights and permissions
About this article
Cite this article
Alavi, S.H., Daneshkhah, A. & Praeger, C.E. Symmetries of biplanes. Des. Codes Cryptogr. 88, 2337–2359 (2020). https://doi.org/10.1007/s10623-020-00784-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00784-1