Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one | Designs, Codes and Cryptography Skip to main content
Log in

Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Optical orthogonal signature pattern codes (OOSPCs) have attracted wide attention as signature patterns of spatial optical code division multiple access networks. In this paper, an improved upper bound on the size of an \((m,n,3,\lambda _a,1)\)-OOSPC with \(\lambda _a=2,3\) is established. The exact number of codewords of an optimal \((m,n,3,\lambda _a,1)\)-OOSPC is determined for any positive integers \(m,n\equiv 2\ ({\mathrm{mod }}\ 4)\) and \(\lambda _a\in \{2,3\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Buratti M.: Some progress on \((v,4,1)\) difference families and optical orthogonal codes. J. Combin. Theory Ser. A 106, 59–75 (2004).

    Article  MathSciNet  Google Scholar 

  2. Buratti M.: Cyclic designs with block size \(4\) and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002).

    Article  MathSciNet  Google Scholar 

  3. Buratti M., Pasotti A.: Further progress on difference families with block size \(4\) or \(5\). Des. Codes Cryptogr. 56, 1–20 (2010).

    Article  MathSciNet  Google Scholar 

  4. Buratti M., Pasotti A., Wu D.: On optimal \((v,5,2,1)\) optical orthogonal codes. Des. Codes Cryptogr. 68, 349–371 (2013).

    Article  MathSciNet  Google Scholar 

  5. Chen J., Ji L., Li Y.: New optical orthogonal signature pattern codes with maximum collision parameter \(2\) and weight \(4\). Des. Codes Cryptogr. 85, 299–318 (2017).

    Article  MathSciNet  Google Scholar 

  6. Chen J., Ji L., Li Y.: Combinatorial constructions of optimal \((m, n, 4, 2)\) optical orthogonal signature pattern codes. Des. Codes Cryptogr. 86, 1499–1525 (2018).

    Article  MathSciNet  Google Scholar 

  7. Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inform. Theory 35(3), 595–604 (1989).

    Article  MathSciNet  Google Scholar 

  8. Colbourn C.J.: Difference matrices. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 411–419. CRC Press, Boca Raton (2007).

    MATH  Google Scholar 

  9. Colbourn C.J.: Triple systems. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 58–62. CRC Press, Boca Raton (2007).

    MATH  Google Scholar 

  10. Feng T., Chang Y., Ji L.: Constructions for strictly cyclic \(3\)-designs and applications to optimal OOCs with \(\lambda =2\). J. Combin. Theory Ser. A 115, 1527–1551 (2008).

    Article  MathSciNet  Google Scholar 

  11. Feng T., Wang L., Wang X.: Optimal \(2\)-D \((n \times m, 3, 2, 1)\)-optical orthogonal codes and related equi-difference conflict avoiding codes. Des. Codes Cryptogr. 87, 1499–1520 (2019).

    Article  MathSciNet  Google Scholar 

  12. Fu H., Lin Y., Mishima M.: Optimal conflict-avoiding codes of even length and weight \(3\). IEEE Trans. Inform. Theory 56(11), 5747–5756 (2010).

    Article  MathSciNet  Google Scholar 

  13. Fuji-Hara R., Miao Y.: Optical orthogonal codes: their bounds and new optimal constructions. IEEE Trans. Inform. Theory 46(7), 2396–2406 (2000).

    Article  MathSciNet  Google Scholar 

  14. Ge G., Yin J.: Constructions for optimal \((v,4,1)\) optical orthogonal codes. IEEE Trans. Inform. Theory 47(7), 2998–3004 (2001).

    Article  MathSciNet  Google Scholar 

  15. Ji L., Ding B., Wang X., Ge G.: Asymptotically optimal optical orthogonal signature pattern codes. IEEE Trans. Inform. Theory 64(7), 5419–5431 (2018).

    Article  MathSciNet  Google Scholar 

  16. Jimbo M., Mishima M., Janiszewski S., Teymorian A.Y., Tonchev V.D.: On conflict-avoiding codes of length \(n=4m\) for three active users. IEEE Trans. Inform. Theory 53(8), 2732–2742 (2007).

    Article  MathSciNet  Google Scholar 

  17. Johnson S.M.: A new upper bound for error-correcting codes. IEEE Trans. Inform. Theory 8, 203–207 (1962).

    Article  MathSciNet  Google Scholar 

  18. Kitayama K.: Novel spatial spread spectrum based fiber optic CDMA networks for image transmission. IEEE J. Sel. Areas Commun. 12(4), 762–772 (1994).

    Article  Google Scholar 

  19. Kitayama K.: Optical Code Division Multiple Access: A Practical Perspective. Cambridge University Press, New York (2014).

    Book  Google Scholar 

  20. Kwong W.C., Yang G.C.: Image transmission in multicore-fiber code-division multiple-access networks. IEEE Commun. Lett. 2(10), 285–287 (1998).

    Article  Google Scholar 

  21. Levenshtein V.I., Tonchev V.D.: Optimal conflict-avoiding codes for three active users. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 535–537 (2005).

  22. Mishima M., Fu H., Uruno S.: Optimal conflict-avoiding codes of length \(n\equiv 0\, ({{{\rm mod }}}\, 16)\) and weight \(3\). Des. Codes Cryptogr. 52, 275–291 (2009).

    Article  MathSciNet  Google Scholar 

  23. Pan R., Chang Y.: Combinatorial constructions for maximum optical orthogonal signature pattern codes. Discret. Math. 313, 2918–2931 (2013).

    Article  MathSciNet  Google Scholar 

  24. Pan R., Chang Y.: \((m, n,3,1)\) optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inform. Theory 61(2), 1139–1148 (2015).

    Article  MathSciNet  Google Scholar 

  25. Pan R., Feng T., Wang L., Wang X.: Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one, arXiv:1907.04588.

  26. Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter \(2\) and weight \(4\). IEEE Trans. Inform. Theory 56(7), 3613–3620 (2010).

    Article  MathSciNet  Google Scholar 

  27. Sawa M., Kageyama S.: Optimal optical orthogonal signature pattern codes of weight \(3\). Biom. Lett. 46, 89–102 (2009).

    Google Scholar 

  28. Wang X., Chang Y., Feng T.: Optimal \(2\)-D \((n\times m,3,2,1)\)-optical orthogonal codes. IEEE Trans. Inform. Theory 59(1), 710–725 (2013).

    Article  MathSciNet  Google Scholar 

  29. Yang G.C., Kwong W.C.: Two-dimensional spatial signature patterns. IEEE Trans. Commun. 44(2), 184–191 (1996).

    Article  Google Scholar 

  30. Yin J.: Some combinatorial constructions for optical orthogonal codes. Discret. Math. 185, 201–219 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomiao Wang.

Additional information

Communicated by M. Buratti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC under Grant 11601472, and the Yunnan Applied Basic Research Project of China under Grant 2016FD005 (R. Pan), NSFC under Grant 11871095, and Fundamental Research Funds for the Central Universities under Grant 2016JBZ012 (T. Feng), NSFC under Grant 11771119, and NSFHB under Grant A2019507002 (L. Wang), NSFC under Grants 11771227, 11871291, and Zhejiang Provincial Natural Science Foundation of China under Grant LY17A010008 (X. Wang).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Feng, T., Wang, L. et al. Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one. Des. Codes Cryptogr. 88, 119–131 (2020). https://doi.org/10.1007/s10623-019-00675-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00675-0

Keywords

Mathematics Subject Classification

Navigation