Abstract
Optical orthogonal signature pattern codes (OOSPCs) have attracted wide attention as signature patterns of spatial optical code division multiple access networks. In this paper, an improved upper bound on the size of an \((m,n,3,\lambda _a,1)\)-OOSPC with \(\lambda _a=2,3\) is established. The exact number of codewords of an optimal \((m,n,3,\lambda _a,1)\)-OOSPC is determined for any positive integers \(m,n\equiv 2\ ({\mathrm{mod }}\ 4)\) and \(\lambda _a\in \{2,3\}\).
Similar content being viewed by others
References
Abel R.J.R., Buratti M.: Some progress on \((v,4,1)\) difference families and optical orthogonal codes. J. Combin. Theory Ser. A 106, 59–75 (2004).
Buratti M.: Cyclic designs with block size \(4\) and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002).
Buratti M., Pasotti A.: Further progress on difference families with block size \(4\) or \(5\). Des. Codes Cryptogr. 56, 1–20 (2010).
Buratti M., Pasotti A., Wu D.: On optimal \((v,5,2,1)\) optical orthogonal codes. Des. Codes Cryptogr. 68, 349–371 (2013).
Chen J., Ji L., Li Y.: New optical orthogonal signature pattern codes with maximum collision parameter \(2\) and weight \(4\). Des. Codes Cryptogr. 85, 299–318 (2017).
Chen J., Ji L., Li Y.: Combinatorial constructions of optimal \((m, n, 4, 2)\) optical orthogonal signature pattern codes. Des. Codes Cryptogr. 86, 1499–1525 (2018).
Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inform. Theory 35(3), 595–604 (1989).
Colbourn C.J.: Difference matrices. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 411–419. CRC Press, Boca Raton (2007).
Colbourn C.J.: Triple systems. In: Colbourn C.J., Dinitz J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 58–62. CRC Press, Boca Raton (2007).
Feng T., Chang Y., Ji L.: Constructions for strictly cyclic \(3\)-designs and applications to optimal OOCs with \(\lambda =2\). J. Combin. Theory Ser. A 115, 1527–1551 (2008).
Feng T., Wang L., Wang X.: Optimal \(2\)-D \((n \times m, 3, 2, 1)\)-optical orthogonal codes and related equi-difference conflict avoiding codes. Des. Codes Cryptogr. 87, 1499–1520 (2019).
Fu H., Lin Y., Mishima M.: Optimal conflict-avoiding codes of even length and weight \(3\). IEEE Trans. Inform. Theory 56(11), 5747–5756 (2010).
Fuji-Hara R., Miao Y.: Optical orthogonal codes: their bounds and new optimal constructions. IEEE Trans. Inform. Theory 46(7), 2396–2406 (2000).
Ge G., Yin J.: Constructions for optimal \((v,4,1)\) optical orthogonal codes. IEEE Trans. Inform. Theory 47(7), 2998–3004 (2001).
Ji L., Ding B., Wang X., Ge G.: Asymptotically optimal optical orthogonal signature pattern codes. IEEE Trans. Inform. Theory 64(7), 5419–5431 (2018).
Jimbo M., Mishima M., Janiszewski S., Teymorian A.Y., Tonchev V.D.: On conflict-avoiding codes of length \(n=4m\) for three active users. IEEE Trans. Inform. Theory 53(8), 2732–2742 (2007).
Johnson S.M.: A new upper bound for error-correcting codes. IEEE Trans. Inform. Theory 8, 203–207 (1962).
Kitayama K.: Novel spatial spread spectrum based fiber optic CDMA networks for image transmission. IEEE J. Sel. Areas Commun. 12(4), 762–772 (1994).
Kitayama K.: Optical Code Division Multiple Access: A Practical Perspective. Cambridge University Press, New York (2014).
Kwong W.C., Yang G.C.: Image transmission in multicore-fiber code-division multiple-access networks. IEEE Commun. Lett. 2(10), 285–287 (1998).
Levenshtein V.I., Tonchev V.D.: Optimal conflict-avoiding codes for three active users. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 535–537 (2005).
Mishima M., Fu H., Uruno S.: Optimal conflict-avoiding codes of length \(n\equiv 0\, ({{{\rm mod }}}\, 16)\) and weight \(3\). Des. Codes Cryptogr. 52, 275–291 (2009).
Pan R., Chang Y.: Combinatorial constructions for maximum optical orthogonal signature pattern codes. Discret. Math. 313, 2918–2931 (2013).
Pan R., Chang Y.: \((m, n,3,1)\) optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inform. Theory 61(2), 1139–1148 (2015).
Pan R., Feng T., Wang L., Wang X.: Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one, arXiv:1907.04588.
Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter \(2\) and weight \(4\). IEEE Trans. Inform. Theory 56(7), 3613–3620 (2010).
Sawa M., Kageyama S.: Optimal optical orthogonal signature pattern codes of weight \(3\). Biom. Lett. 46, 89–102 (2009).
Wang X., Chang Y., Feng T.: Optimal \(2\)-D \((n\times m,3,2,1)\)-optical orthogonal codes. IEEE Trans. Inform. Theory 59(1), 710–725 (2013).
Yang G.C., Kwong W.C.: Two-dimensional spatial signature patterns. IEEE Trans. Commun. 44(2), 184–191 (1996).
Yin J.: Some combinatorial constructions for optical orthogonal codes. Discret. Math. 185, 201–219 (1998).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Buratti.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supported by NSFC under Grant 11601472, and the Yunnan Applied Basic Research Project of China under Grant 2016FD005 (R. Pan), NSFC under Grant 11871095, and Fundamental Research Funds for the Central Universities under Grant 2016JBZ012 (T. Feng), NSFC under Grant 11771119, and NSFHB under Grant A2019507002 (L. Wang), NSFC under Grants 11771227, 11871291, and Zhejiang Provincial Natural Science Foundation of China under Grant LY17A010008 (X. Wang).
Rights and permissions
About this article
Cite this article
Pan, R., Feng, T., Wang, L. et al. Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one. Des. Codes Cryptogr. 88, 119–131 (2020). https://doi.org/10.1007/s10623-019-00675-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-019-00675-0