New covering codes of radius R, codimension tR and $$tR+\frac{R}{2}$$ , and saturating sets in projective spaces | Designs, Codes and Cryptography Skip to main content
Log in

New covering codes of radius R, codimension tR and \(tR+\frac{R}{2}\), and saturating sets in projective spaces

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The length function \(\ell _q(r,R)\) is the smallest length of a q-ary linear code of codimension r and covering radius R. In this work we obtain new constructive upper bounds on \(\ell _q(r,R)\) for all \(R\ge 4\), \(r=tR\), \(t\ge 2\), and also for all even \(R\ge 2\), \(r=tR+\frac{R}{2}\), \(t\ge 1\). The new bounds are provided by infinite families of new covering codes with fixed R and increasing codimension. The new bounds improve upon the known ones. We propose a general regular construction (called “Line+Ovals”) of a minimal \(\rho \)-saturating \(((\rho +1)q+1)\)-set in the projective space \(\mathrm {PG}(2\rho +1,q)\) for all \(\rho \ge 0\). Such a set corresponds to an \([Rq+1,Rq+1-2R,3]_qR\) locally optimal code of covering radius \(R=\rho +1\). Basing on combinatorial properties of these codes regarding to spherical capsules, we give constructions for code codimension lifting and obtain infinite families of new surface-covering codes with codimension \(r=tR\), \(t\ge 2\). In addition, we obtain new 1-saturating sets in the projective plane \(\mathrm {PG}(2,q^2)\) and, basing on them, construct infinite code families with fixed even radius \(R\ge 2\) and codimension \(r=tR+\frac{R}{2}\), \(t\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacsó G., Héger T., Szőnyi T.: The 2-blocking number and the upper chromatic number of \(\text{ PG }(2, q)\). J. Comb. Des. 21(12), 585–602 (2013).

    MathSciNet  MATH  Google Scholar 

  2. Bartoli D., Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New bounds for linear codes of covering radii 2 and 3, Cryptography and Communications, to appear, https://doi.org/10.1007/s12095-018-0335-0. Accessed 26 May 2019.

    Article  MathSciNet  Google Scholar 

  3. Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois planes. Adv. Geom. 7(1), 39–53 (2007).

    Article  MathSciNet  Google Scholar 

  4. Boros E., Szőnyi T., Tichler K.: On defining sets for projective planes. Discret. Math. 303(1–3), 17–31 (2005).

    Article  MathSciNet  Google Scholar 

  5. Brualdi R.A., Pless V.S., Wilson R.M.: Short codes with a given covering radius. IEEE Trans. Inf. Theory 35(1), 99–109 (1989).

    Article  MathSciNet  Google Scholar 

  6. Brualdi R.A., Litsyn S., Pless V.S.: Covering radius. In: Pless V.S., Huffman W.C., Brualdi R.A. (eds.) Handbook of Coding Theory, vol. 1, pp. 755–826. Elsevier, Amsterdam (1998).

    Google Scholar 

  7. Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes, vol. 54. Elsevier, Amsterdam (1997).

    MATH  Google Scholar 

  8. Csajbók B., Héger T.: Double blocking sets of size \(3q-1\) in \(\text{ PG }(2, q)\). Eur. J. Comb. 78, 73–89 (2019).

    Article  MathSciNet  Google Scholar 

  9. Davydov A.A.: Construction of codes with covering radius 2. In: Cohen G., Litsyn S., Lobstein A., Zemor G. (eds.) Algebraic Coding. Lect. Notes Comput. Science, vol. 573, pp. 23–31. Springer, New–York (1992).

  10. Davydov A.A.: Construction of linear covering codes. Probl. Inf. Transm. 26(4), 317–331 (1990).

    MathSciNet  MATH  Google Scholar 

  11. Davydov A.A.: Constructions and families of covering codes and saturated sets of points in projective geometry. IEEE Trans. Inf. Theory 41(6), 2071–2080 (1995).

    Article  MathSciNet  Google Scholar 

  12. Davydov A.A.: Constructions and families of nonbinary linear codes with covering radius 2. IEEE Trans. Inf. Theory 45(5), 1679–1686 (1999).

    Article  MathSciNet  Google Scholar 

  13. Davydov A.A., Östergård P.R.J.: On saturating sets in small projective geometries. Eur. J. Comb. 21(5), 563–570 (2000).

    Article  MathSciNet  Google Scholar 

  14. Davydov A.A., Östergård P.R.J.: Linear codes with covering radius \(R=2,3\) and codimension \(tR\). IEEE Trans. Inf. Theory 47(1), 416–421 (2001).

    Article  MathSciNet  Google Scholar 

  15. Davydov A.A., Östergård P.R.J.: Linear codes with covering radius 3. Des. Codes Cryptogr. 54(3), 253–271 (2010).

    Article  MathSciNet  Google Scholar 

  16. Davydov A.A., Marcugini S., Pambianco F.: On saturating sets in projective spaces. J. Comb. Theory Ser. A 103(1), 1–15 (2003).

    Article  MathSciNet  Google Scholar 

  17. Davydov A.A., Faina G., Marcugini S., Pambianco F.: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces. IEEE Trans. Inf. Theory 51(12), 4378–4387 (2005).

    Article  MathSciNet  Google Scholar 

  18. Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear covering codes over nonbinary finite fields. In: Proc. XI Int. Workshop on Algebraic and Combinatorial Coding Theory, ACCT2008. pp. 70–75. Pamporovo, Bulgaria (2008) http://www.moi.math.bas.bg/acct2008/b12.pdf. Accessed 26 May 2019.

  19. Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1), 119–147 (2011).

    Article  MathSciNet  Google Scholar 

  20. De Beule J., Héger T., Szőnyi T., Van de Voorde G.: Blocking and double blocking sets in finite planes. Electron. J. Comb. 23(2), 6 (2016).

    MathSciNet  MATH  Google Scholar 

  21. Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016).

    Article  MathSciNet  Google Scholar 

  22. Ezerman M.F., Grassl M., Sole P.: The weights in MDS codes. IEEE Trans. Inf. Theory 57(1), 392–396 (2011).

    Article  MathSciNet  Google Scholar 

  23. Giulietti M.: The geometry of covering codes: small complete caps and saturating sets in Galois spaces. In: Blackburn S.R., Holloway R., Wildon M. (eds.) Surveys in Combinatorics 2013, London Math. Soc. Lect. Note Series, vol. 409, pp. 51–90. Cambridge Univ Press, Cambridge (2013).

  24. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs, 2nd edn. Clarendon Press, Oxford (1998).

    Google Scholar 

  25. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Plan. Infer. 72(1), 355–380 (1998).

    Article  MathSciNet  Google Scholar 

  26. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis A., Hirschfeld J.W.P. et al. (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston (2001).

  27. Janwa H.: Some optimal codes from algebraic geometry and their covering radii. Eur. J. Comb. 11(3), 249–266 (1990).

    Article  MathSciNet  Google Scholar 

  28. Kiss G., Kóvacs I., Kutnar K., Ruff J., Šparl P.: A note on a geometric construction of large Cayley graphs of given degree and diameter. Stud. Univ. Babes-Bolyai Math. 54(3), 77–84 (2009).

    MathSciNet  MATH  Google Scholar 

  29. Klein A., Storme L.: Applications of Finite Geometry in Coding Theory and Cryptography. In: Crnković D., Tonchev V. (eds.) NATO Science for Peace and Security, Ser. - D: Information and Communication Security, vol. 29, Information Security, Coding Theory and Related Combinatorics, pp. 38–58 (2011).

  30. Landjev I., Storme L.: Galois geometry and coding theory. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry, Chapter 8, pp. 187–214, NOVA Academic Publisher, New York (2012).

  31. Lobstein A.: Covering radius, an online bibliography. https://www.lri.fr/~lobstein/bib-a-jour.pdf. Accessed 26 May 2019.

  32. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 3rd edn. Elsevier, Amsterdam (1981).

    MATH  Google Scholar 

  33. Ughi E.: Saturated configurations of points in projective Galois spaces. Eur. J. Comb. 8(3), 325–334 (1987).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Davydov.

Additional information

Communicated by K. Metsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of A.A. Davydov was done at IITP RAS and supported by the Russian Government (Contract No 14.W03.31.0019). The research of S. Marcugini and F. Pambianco was supported in part by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM) and by University of Perugia, (Project: “Curve algebriche in caratteristica positiva e applicazioni”, Base Research Fund 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.A., Marcugini, S. & Pambianco, F. New covering codes of radius R, codimension tR and \(tR+\frac{R}{2}\), and saturating sets in projective spaces. Des. Codes Cryptogr. 87, 2771–2792 (2019). https://doi.org/10.1007/s10623-019-00649-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00649-2

Keywords

Mathematics Subject Classification

Navigation