Abstract
The length function \(\ell _q(r,R)\) is the smallest length of a q-ary linear code of codimension r and covering radius R. In this work we obtain new constructive upper bounds on \(\ell _q(r,R)\) for all \(R\ge 4\), \(r=tR\), \(t\ge 2\), and also for all even \(R\ge 2\), \(r=tR+\frac{R}{2}\), \(t\ge 1\). The new bounds are provided by infinite families of new covering codes with fixed R and increasing codimension. The new bounds improve upon the known ones. We propose a general regular construction (called “Line+Ovals”) of a minimal \(\rho \)-saturating \(((\rho +1)q+1)\)-set in the projective space \(\mathrm {PG}(2\rho +1,q)\) for all \(\rho \ge 0\). Such a set corresponds to an \([Rq+1,Rq+1-2R,3]_qR\) locally optimal code of covering radius \(R=\rho +1\). Basing on combinatorial properties of these codes regarding to spherical capsules, we give constructions for code codimension lifting and obtain infinite families of new surface-covering codes with codimension \(r=tR\), \(t\ge 2\). In addition, we obtain new 1-saturating sets in the projective plane \(\mathrm {PG}(2,q^2)\) and, basing on them, construct infinite code families with fixed even radius \(R\ge 2\) and codimension \(r=tR+\frac{R}{2}\), \(t\ge 1\).
Similar content being viewed by others
References
Bacsó G., Héger T., Szőnyi T.: The 2-blocking number and the upper chromatic number of \(\text{ PG }(2, q)\). J. Comb. Des. 21(12), 585–602 (2013).
Bartoli D., Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New bounds for linear codes of covering radii 2 and 3, Cryptography and Communications, to appear, https://doi.org/10.1007/s12095-018-0335-0. Accessed 26 May 2019.
Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois planes. Adv. Geom. 7(1), 39–53 (2007).
Boros E., Szőnyi T., Tichler K.: On defining sets for projective planes. Discret. Math. 303(1–3), 17–31 (2005).
Brualdi R.A., Pless V.S., Wilson R.M.: Short codes with a given covering radius. IEEE Trans. Inf. Theory 35(1), 99–109 (1989).
Brualdi R.A., Litsyn S., Pless V.S.: Covering radius. In: Pless V.S., Huffman W.C., Brualdi R.A. (eds.) Handbook of Coding Theory, vol. 1, pp. 755–826. Elsevier, Amsterdam (1998).
Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes, vol. 54. Elsevier, Amsterdam (1997).
Csajbók B., Héger T.: Double blocking sets of size \(3q-1\) in \(\text{ PG }(2, q)\). Eur. J. Comb. 78, 73–89 (2019).
Davydov A.A.: Construction of codes with covering radius 2. In: Cohen G., Litsyn S., Lobstein A., Zemor G. (eds.) Algebraic Coding. Lect. Notes Comput. Science, vol. 573, pp. 23–31. Springer, New–York (1992).
Davydov A.A.: Construction of linear covering codes. Probl. Inf. Transm. 26(4), 317–331 (1990).
Davydov A.A.: Constructions and families of covering codes and saturated sets of points in projective geometry. IEEE Trans. Inf. Theory 41(6), 2071–2080 (1995).
Davydov A.A.: Constructions and families of nonbinary linear codes with covering radius 2. IEEE Trans. Inf. Theory 45(5), 1679–1686 (1999).
Davydov A.A., Östergård P.R.J.: On saturating sets in small projective geometries. Eur. J. Comb. 21(5), 563–570 (2000).
Davydov A.A., Östergård P.R.J.: Linear codes with covering radius \(R=2,3\) and codimension \(tR\). IEEE Trans. Inf. Theory 47(1), 416–421 (2001).
Davydov A.A., Östergård P.R.J.: Linear codes with covering radius 3. Des. Codes Cryptogr. 54(3), 253–271 (2010).
Davydov A.A., Marcugini S., Pambianco F.: On saturating sets in projective spaces. J. Comb. Theory Ser. A 103(1), 1–15 (2003).
Davydov A.A., Faina G., Marcugini S., Pambianco F.: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces. IEEE Trans. Inf. Theory 51(12), 4378–4387 (2005).
Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear covering codes over nonbinary finite fields. In: Proc. XI Int. Workshop on Algebraic and Combinatorial Coding Theory, ACCT2008. pp. 70–75. Pamporovo, Bulgaria (2008) http://www.moi.math.bas.bg/acct2008/b12.pdf. Accessed 26 May 2019.
Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1), 119–147 (2011).
De Beule J., Héger T., Szőnyi T., Van de Voorde G.: Blocking and double blocking sets in finite planes. Electron. J. Comb. 23(2), 6 (2016).
Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016).
Ezerman M.F., Grassl M., Sole P.: The weights in MDS codes. IEEE Trans. Inf. Theory 57(1), 392–396 (2011).
Giulietti M.: The geometry of covering codes: small complete caps and saturating sets in Galois spaces. In: Blackburn S.R., Holloway R., Wildon M. (eds.) Surveys in Combinatorics 2013, London Math. Soc. Lect. Note Series, vol. 409, pp. 51–90. Cambridge Univ Press, Cambridge (2013).
Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs, 2nd edn. Clarendon Press, Oxford (1998).
Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Plan. Infer. 72(1), 355–380 (1998).
Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis A., Hirschfeld J.W.P. et al. (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston (2001).
Janwa H.: Some optimal codes from algebraic geometry and their covering radii. Eur. J. Comb. 11(3), 249–266 (1990).
Kiss G., Kóvacs I., Kutnar K., Ruff J., Šparl P.: A note on a geometric construction of large Cayley graphs of given degree and diameter. Stud. Univ. Babes-Bolyai Math. 54(3), 77–84 (2009).
Klein A., Storme L.: Applications of Finite Geometry in Coding Theory and Cryptography. In: Crnković D., Tonchev V. (eds.) NATO Science for Peace and Security, Ser. - D: Information and Communication Security, vol. 29, Information Security, Coding Theory and Related Combinatorics, pp. 38–58 (2011).
Landjev I., Storme L.: Galois geometry and coding theory. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry, Chapter 8, pp. 187–214, NOVA Academic Publisher, New York (2012).
Lobstein A.: Covering radius, an online bibliography. https://www.lri.fr/~lobstein/bib-a-jour.pdf. Accessed 26 May 2019.
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 3rd edn. Elsevier, Amsterdam (1981).
Ughi E.: Saturated configurations of points in projective Galois spaces. Eur. J. Comb. 8(3), 325–334 (1987).
Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by K. Metsch.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research of A.A. Davydov was done at IITP RAS and supported by the Russian Government (Contract No 14.W03.31.0019). The research of S. Marcugini and F. Pambianco was supported in part by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM) and by University of Perugia, (Project: “Curve algebriche in caratteristica positiva e applicazioni”, Base Research Fund 2018).
Rights and permissions
About this article
Cite this article
Davydov, A.A., Marcugini, S. & Pambianco, F. New covering codes of radius R, codimension tR and \(tR+\frac{R}{2}\), and saturating sets in projective spaces. Des. Codes Cryptogr. 87, 2771–2792 (2019). https://doi.org/10.1007/s10623-019-00649-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-019-00649-2