Linear codes from Denniston maximal arcs | Designs, Codes and Cryptography Skip to main content
Log in

Linear codes from Denniston maximal arcs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we construct functional codes from Denniston maximal arcs. For \(q=2^{4\ell +2}\) we obtain linear codes with parameters \([(\sqrt{q}-1)(q+1),5,d]_q\) where \(\lim _{q \rightarrow +\infty } d=(\sqrt{q}-1)q-\sqrt{q}\). We also find for \(q=16,32\) a number of linear codes which appear to have larger minimum distance with respect to the known codes with same length and dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball S., Blokhuis A., Mazzocca F.: Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17, 31–41 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlotti A.: Sui \((k, n)\)-archi di un piano lineare finito. Boll. Un. Mat. Ital. 11, 553–556 (1956).

    MathSciNet  MATH  Google Scholar 

  3. Bartoli D., Storme L.: On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Adv. Math. Commun. 8(3), 271–280 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartoli D., De Boeck M., Fanali S., Storme L.: On the functional codes defined by quadrics and Hermitian varieties. Des. Codes Cryptogr. 71, 21–46 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderbank A.R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrasco R.A., Johnston M.: Non-Binary Error Control Coding for Wireless Communication and Data Storage. Wiley, Chichester (2009).

    Google Scholar 

  8. De Clerck F., Van Maldeghem H.: Some classes of rank \(2\) geometries, Chapter 10. In: Buekenhout F. (ed.) Handbook of Incidence Geometry, Buildings and Foundations, pp. 433–475. Elsevier, Amsterdam (1995).

    Chapter  Google Scholar 

  9. Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47–64 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  10. Denniston R.H.F.: Some maximal arcs in finite projective planes. J. Combin. Theory 6, 317–319 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  11. Edoukou F.A.B., Hallez A., Rodier F., Storme L.: On the small weight codewords of the functional codes \(C_{herm}(\rm X)\), \({\rm X}\) a non-singular Hermitian variety. Des. Codes Cryptogr. 56, 219–233 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. Edoukou F.A.B., Hallez A., Rodier F., Storme L.: A study of intersections of quadrics having applications on the small weight codewords of the functional codes \(C\_2(Q)\), \(Q\) a non-singular quadric. J. Pure Appl. Algebra 214, 1729–1739 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. Edoukou F.A.B., Ling S., Xing C.: Structure of functional codes defined on non-degenerate Hermitian varieties. J. Combin. Theory A 118, 2436–2444 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. Hallez A., Storme L.: Functional codes arising from quadric intersections with Hermitian varieties. Finite Fields Appl. 16, 27–35 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamilton N.: Degree \(8\) maximal arcs in \(PG(2,2^h)\), \(h\) odd. J. Combin. Theory Ser. A 100, 265–276 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamilton N., Mathon R.: On the spectrum of non-Denniston maximal arcs in \(PG(2,2^h)\). Eur. J. Combin. 25(3), 415–421 (2004).

    Article  MATH  Google Scholar 

  17. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).

    MATH  Google Scholar 

  18. Johnston M., Carrasco R.A.: Performance of Hermitian codes using combined error and erasure decoding. IEE Proc. Commun. 153(1), 21–30 (2006).

    Article  Google Scholar 

  19. Jibril M., Tomlinson M., Zaki Ahmed M., Tjhai C.: Performance comparison between Hermitian codes and shortened non-binary BCH codes. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (2009).

  20. Mathon R.: New maximal arcs in desarguesian planes. J. Combin. Theory Ser. A 97, 353–368 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. Mint Database, http://mint.sbg.ac.at.

  22. Stichtenoth H.: A note on Hermitian codes over \(GF(q^2)\). IEEE Trans. Inf. Theory 34(5), 1345–1348 (1988).

    Article  MATH  Google Scholar 

  23. Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts inMathematics, vol. 254, 2nd edn. Springer, Berlin (2009).

    Google Scholar 

  24. Thas J.A.: Some results concerning \(\{(q+1)(n-1); n\}\)-arcs and \(\{(q+1)(n-1)+1; n\}\)-arcs in finite projective planes of order \(q\). J. Combin. Theory Ser. A 19, 228–232 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  25. Thas J.A.: Construction of maximal arcs and partial geometries. Geom. Dedic. 3, 61–64 (1974).

    MathSciNet  MATH  Google Scholar 

  26. Thas J.A.: Construction of maximal arcs and dual ovals in translation planes. Eur. J. Combin. 1, 189–192 (1980).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first two authors were supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The first author carried out this research within the project “Progetto Codici correttori di errori”, supported by Fondo Ricerca di Base, 2015, of Università degli Studi di Perugia. The second author carried out this research within the project “Progetto Geometrie di Galois, Curve Algebriche su campi finiti e loro Applicazioni”, supported by Fondo Ricerca di Base, 2015, of Università degli Studi di Perugia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bartoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, D., Giulietti, M. & Montanucci, M. Linear codes from Denniston maximal arcs. Des. Codes Cryptogr. 87, 795–806 (2019). https://doi.org/10.1007/s10623-018-0515-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0515-0

Keywords

Mathematics Subject Classification

Navigation