Abstract
In this paper we construct functional codes from Denniston maximal arcs. For \(q=2^{4\ell +2}\) we obtain linear codes with parameters \([(\sqrt{q}-1)(q+1),5,d]_q\) where \(\lim _{q \rightarrow +\infty } d=(\sqrt{q}-1)q-\sqrt{q}\). We also find for \(q=16,32\) a number of linear codes which appear to have larger minimum distance with respect to the known codes with same length and dimension.
Similar content being viewed by others
References
Ball S., Blokhuis A., Mazzocca F.: Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17, 31–41 (1997).
Barlotti A.: Sui \((k, n)\)-archi di un piano lineare finito. Boll. Un. Mat. Ital. 11, 553–556 (1956).
Bartoli D., Storme L.: On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Adv. Math. Commun. 8(3), 271–280 (2014).
Bartoli D., De Boeck M., Fanali S., Storme L.: On the functional codes defined by quadrics and Hermitian varieties. Des. Codes Cryptogr. 71, 21–46 (2014).
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Calderbank A.R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).
Carrasco R.A., Johnston M.: Non-Binary Error Control Coding for Wireless Communication and Data Storage. Wiley, Chichester (2009).
De Clerck F., Van Maldeghem H.: Some classes of rank \(2\) geometries, Chapter 10. In: Buekenhout F. (ed.) Handbook of Incidence Geometry, Buildings and Foundations, pp. 433–475. Elsevier, Amsterdam (1995).
Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47–64 (1972).
Denniston R.H.F.: Some maximal arcs in finite projective planes. J. Combin. Theory 6, 317–319 (1969).
Edoukou F.A.B., Hallez A., Rodier F., Storme L.: On the small weight codewords of the functional codes \(C_{herm}(\rm X)\), \({\rm X}\) a non-singular Hermitian variety. Des. Codes Cryptogr. 56, 219–233 (2010).
Edoukou F.A.B., Hallez A., Rodier F., Storme L.: A study of intersections of quadrics having applications on the small weight codewords of the functional codes \(C\_2(Q)\), \(Q\) a non-singular quadric. J. Pure Appl. Algebra 214, 1729–1739 (2010).
Edoukou F.A.B., Ling S., Xing C.: Structure of functional codes defined on non-degenerate Hermitian varieties. J. Combin. Theory A 118, 2436–2444 (2011).
Hallez A., Storme L.: Functional codes arising from quadric intersections with Hermitian varieties. Finite Fields Appl. 16, 27–35 (2010).
Hamilton N.: Degree \(8\) maximal arcs in \(PG(2,2^h)\), \(h\) odd. J. Combin. Theory Ser. A 100, 265–276 (2002).
Hamilton N., Mathon R.: On the spectrum of non-Denniston maximal arcs in \(PG(2,2^h)\). Eur. J. Combin. 25(3), 415–421 (2004).
Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).
Johnston M., Carrasco R.A.: Performance of Hermitian codes using combined error and erasure decoding. IEE Proc. Commun. 153(1), 21–30 (2006).
Jibril M., Tomlinson M., Zaki Ahmed M., Tjhai C.: Performance comparison between Hermitian codes and shortened non-binary BCH codes. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (2009).
Mathon R.: New maximal arcs in desarguesian planes. J. Combin. Theory Ser. A 97, 353–368 (2002).
Mint Database, http://mint.sbg.ac.at.
Stichtenoth H.: A note on Hermitian codes over \(GF(q^2)\). IEEE Trans. Inf. Theory 34(5), 1345–1348 (1988).
Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts inMathematics, vol. 254, 2nd edn. Springer, Berlin (2009).
Thas J.A.: Some results concerning \(\{(q+1)(n-1); n\}\)-arcs and \(\{(q+1)(n-1)+1; n\}\)-arcs in finite projective planes of order \(q\). J. Combin. Theory Ser. A 19, 228–232 (1974).
Thas J.A.: Construction of maximal arcs and partial geometries. Geom. Dedic. 3, 61–64 (1974).
Thas J.A.: Construction of maximal arcs and dual ovals in translation planes. Eur. J. Combin. 1, 189–192 (1980).
Acknowledgements
The first two authors were supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The first author carried out this research within the project “Progetto Codici correttori di errori”, supported by Fondo Ricerca di Base, 2015, of Università degli Studi di Perugia. The second author carried out this research within the project “Progetto Geometrie di Galois, Curve Algebriche su campi finiti e loro Applicazioni”, supported by Fondo Ricerca di Base, 2015, of Università degli Studi di Perugia.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.
Rights and permissions
About this article
Cite this article
Bartoli, D., Giulietti, M. & Montanucci, M. Linear codes from Denniston maximal arcs. Des. Codes Cryptogr. 87, 795–806 (2019). https://doi.org/10.1007/s10623-018-0515-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-018-0515-0