Projective Reed–Muller type codes on higher dimensional scrolls | Designs, Codes and Cryptography Skip to main content
Log in

Projective Reed–Muller type codes on higher dimensional scrolls

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In 1988 Lachaud introduced the class of projective Reed–Muller codes, defined by evaluating the space of homogeneous polynomials of a fixed degree d on the points of \(\mathbb {P}^n(\mathbb {F}_q)\). In this paper we evaluate the same space of polynomials on the points of a higher dimensional scroll, defined from a set of rational normal curves contained in complementary linear subspaces of a projective space. We determine a formula for the dimension of the codes, and the exact value of the dimension and the minimum distance in some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker T., Weispfenning W.: Gröbner Bases. Springer, New York (1993).

    Book  MATH  Google Scholar 

  2. Beelen, P., Datta, M., Ghorpade, S.R.: A combinatorial approach to the number of solutions of systems of homogeneous polynomial equations over finite fields. arXiv:1807.01683v2 (2018)

  3. Beelen P., Datta M., Ghorpade S.R.: Maximum number of common zeros of homogeneous polynomials over finite fields. Proc. Am. Math. Soc. 146(4), 1451–1468 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. Carvalho C., Neumann V.G.L.: Projective Reed-Muller type codes on rational normal scrolls. Finite Fields Appl. 37, 85–107 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. Carvalho C., Neumann V.G.L., Lopez H.: Projective nested cartesian codes. Bull. Braz. Math. Soc. 48, 283–302 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. Couvreur A., Duursma I.: Evaluation codes from smooth quadric surfaces and twisted Segre varieties. Des. Codes Cryptogr. 66, 291–303 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007).

    Book  MATH  Google Scholar 

  9. Duursma I., Rentería C., Tapia-Recillas H.: Reed Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. (AAECC) 11, 455–462 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. González-Sarabia, M., Martínez-Bernal, J., Villarreal, R.H., Vívares, C.E.: Generalized minimum distance functions. J. Algebr. Comb. https://doi.org/10.1007/s10801-018-0855-x (2018)

  11. González-Sarabia M., Rentería C., Tapia Recillas H.: Reed-Muller type codes over the segre variety. Finite Fields Appl. 8, 511–518 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. González-Sarabia M., Rentería C.: The dual code of some Reed-Muller-type codes. Appl. Algebra Eng. Commun. Comput. (AAECC) 14, 329–333 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Harris, J.: Algebraic Geometry: A First Course, 3rd. edn, Springer, GTM, no. 133 (1995)

  14. Lachaud G.: Projective Reed-Muller codes. In: Cohen G., Godlewski P. (eds.) Coding Theory and Applications. Lecture Notes in Computer Science, vol. 311. Springer, Berlin (1988).

    Google Scholar 

  15. Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. Rentería, C., Tapia-Recillas, H.: Reed-Muller type codes on the Veronese Variety over finite fields. In: Buchmann, J., Hoholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, ISBN 3-540-66248-0, pp. 237–243 , Springer, New York (2000)

  17. Sörensen A.B.: Projective Reed-Muller codes. IEEE Trans. Inform. Theory 37(6), 1567–1576 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  18. Tochimani A., Pinto M.V., Villarreal R.H.: Direct products in projective Segre codes. Finite Fields Appl. 39, 96–110 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  19. Tucker A.: Applied Combinatorics, 6th edn. Wiley, New York (2012).

    MATH  Google Scholar 

  20. van Lint, J.H.: Coding Theory, Lect. Notes Math., 2nd edn, vol. 201. Springer, Berlin (1973)

Download references

Acknowledgements

The second author is grateful to Prof. F. Zaldivar for pointing out the concept of a higher dimensional scroll. We thank the referees for a careful reading and their comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Ramírez-Mondragón.

Additional information

Communicated by G. Korchmaros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Carvalho and V. G. L. Neumann are partially supported by CNPq and FAPEMIG. X. Ramírez-Mondragón is supported by CONACyT Scholarship No. 209918.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, C., Ramírez-Mondragón, X., Neumann, V.G.L. et al. Projective Reed–Muller type codes on higher dimensional scrolls. Des. Codes Cryptogr. 87, 2027–2042 (2019). https://doi.org/10.1007/s10623-018-00603-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-00603-8

Keywords

Mathematics Subject Classification

Navigation