Abstract
In 1988 Lachaud introduced the class of projective Reed–Muller codes, defined by evaluating the space of homogeneous polynomials of a fixed degree d on the points of \(\mathbb {P}^n(\mathbb {F}_q)\). In this paper we evaluate the same space of polynomials on the points of a higher dimensional scroll, defined from a set of rational normal curves contained in complementary linear subspaces of a projective space. We determine a formula for the dimension of the codes, and the exact value of the dimension and the minimum distance in some special cases.
Similar content being viewed by others
References
Becker T., Weispfenning W.: Gröbner Bases. Springer, New York (1993).
Beelen, P., Datta, M., Ghorpade, S.R.: A combinatorial approach to the number of solutions of systems of homogeneous polynomial equations over finite fields. arXiv:1807.01683v2 (2018)
Beelen P., Datta M., Ghorpade S.R.: Maximum number of common zeros of homogeneous polynomials over finite fields. Proc. Am. Math. Soc. 146(4), 1451–1468 (2018).
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Carvalho C., Neumann V.G.L.: Projective Reed-Muller type codes on rational normal scrolls. Finite Fields Appl. 37, 85–107 (2016).
Carvalho C., Neumann V.G.L., Lopez H.: Projective nested cartesian codes. Bull. Braz. Math. Soc. 48, 283–302 (2017).
Couvreur A., Duursma I.: Evaluation codes from smooth quadric surfaces and twisted Segre varieties. Des. Codes Cryptogr. 66, 291–303 (2013).
Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007).
Duursma I., Rentería C., Tapia-Recillas H.: Reed Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. (AAECC) 11, 455–462 (2001).
González-Sarabia, M., Martínez-Bernal, J., Villarreal, R.H., Vívares, C.E.: Generalized minimum distance functions. J. Algebr. Comb. https://doi.org/10.1007/s10801-018-0855-x (2018)
González-Sarabia M., Rentería C., Tapia Recillas H.: Reed-Muller type codes over the segre variety. Finite Fields Appl. 8, 511–518 (2002).
González-Sarabia M., Rentería C.: The dual code of some Reed-Muller-type codes. Appl. Algebra Eng. Commun. Comput. (AAECC) 14, 329–333 (2004).
Harris, J.: Algebraic Geometry: A First Course, 3rd. edn, Springer, GTM, no. 133 (1995)
Lachaud G.: Projective Reed-Muller codes. In: Cohen G., Godlewski P. (eds.) Coding Theory and Applications. Lecture Notes in Computer Science, vol. 311. Springer, Berlin (1988).
Rentería C., Tapia-Recillas H.: Reed-Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997).
Rentería, C., Tapia-Recillas, H.: Reed-Muller type codes on the Veronese Variety over finite fields. In: Buchmann, J., Hoholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, ISBN 3-540-66248-0, pp. 237–243 , Springer, New York (2000)
Sörensen A.B.: Projective Reed-Muller codes. IEEE Trans. Inform. Theory 37(6), 1567–1576 (1991).
Tochimani A., Pinto M.V., Villarreal R.H.: Direct products in projective Segre codes. Finite Fields Appl. 39, 96–110 (2016).
Tucker A.: Applied Combinatorics, 6th edn. Wiley, New York (2012).
van Lint, J.H.: Coding Theory, Lect. Notes Math., 2nd edn, vol. 201. Springer, Berlin (1973)
Acknowledgements
The second author is grateful to Prof. F. Zaldivar for pointing out the concept of a higher dimensional scroll. We thank the referees for a careful reading and their comments which improved the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Korchmaros.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
C. Carvalho and V. G. L. Neumann are partially supported by CNPq and FAPEMIG. X. Ramírez-Mondragón is supported by CONACyT Scholarship No. 209918.
Rights and permissions
About this article
Cite this article
Carvalho, C., Ramírez-Mondragón, X., Neumann, V.G.L. et al. Projective Reed–Muller type codes on higher dimensional scrolls. Des. Codes Cryptogr. 87, 2027–2042 (2019). https://doi.org/10.1007/s10623-018-00603-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-018-00603-8