Abstract
An m-cover of lines of a finite projective space \(\mathrm{PG}(r,q)\) (of a finite polar space \({\mathcal {P}}\)) is a set of lines \({\mathcal {L}}\) of \(\mathrm{PG}(r,q)\) (of \({\mathcal {P}}\)) such that every point of \(\mathrm{PG}(r,q)\) (of \({\mathcal {P}}\)) contains m lines of \({\mathcal {L}}\), for some m. Embed \(\mathrm{PG}(r,q)\) in \(\mathrm{PG}(r,q^2)\). Let \({{\bar{{\mathcal {L}}}}}\) denote the set of points of \(\mathrm{PG}(r,q^2)\) lying on the extended lines of \({\mathcal {L}}\). An m-cover \({\mathcal {L}}\) of \(\mathrm{PG}(r,q)\) is an \((r-2)\)-dual m-cover if there are two possibilities for the number of lines of \({\mathcal {L}}\) contained in an \((r-2)\)-space of \(\mathrm{PG}(r,q)\). Basing on this notion, we characterize m-covers \({\mathcal {L}}\) of \(\mathrm{PG}(r,q)\) such that \({{\bar{{\mathcal {L}}}}}\) is a two-character set of \(\mathrm{PG}(r,q^2)\). In particular, we show that if \({\mathcal {L}}\) is invariant under a Singer cyclic group of \(\mathrm{PG}(r,q)\) then it is an \((r-2)\)-dual m-cover. Assuming that the lines of \({\mathcal {L}}\) are lines of a symplectic polar space \({\mathcal {W}}(r,q)\) (of an orthogonal polar space \({\mathcal {Q}}(r,q)\) of parabolic type), similarly to the projective case we introduce the notion of an \((r-2)\)-dual m-cover of symplectic type (of parabolic type). We prove that an m-cover \({\mathcal {L}}\) of \({\mathcal {W}}(r,q)\) (of \({\mathcal {Q}}(r,q)\)) has this dual property if and only if \({\bar{{\mathcal {L}}}}\) is a tight set of an Hermitian variety \({\mathcal {H}}(r,q^2)\) or of \({\mathcal {W}}(r,q^2)\) (of \({\mathcal {H}}(r,q^2)\) or of \({\mathcal {Q}}(r,q^2)\)). We also provide some interesting examples of \((4n-3)\)-dual m-covers of symplectic type of \({\mathcal {W}}(4n-1,q)\).
Similar content being viewed by others
References
Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and $m$-ovoids of finite polar spaces. J. Comb. Theory Ser. A 114(7), 1293–1314 (2007).
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Bruen A., Fisher J.C.: Spreads which are not dual spreads. Can. Math. Bull. 12(6), 801–803 (1969).
Buekenhout F.: More geometry for Hering’s $3^{6}$ : SL(2, 13). In: Advances in Finite Geometries and Designs (Chelwood Gate, 1990), pp. 57–68. Oxford Science Publications, Oxford University Press, New York (1991).
Cossidente A.: Some constructions on the Hermitian surface. Des. Codes Cryptogr. 51(2), 123–129 (2009).
Cossidente A., King O.H.: On some maximal subgroups of unitary groups. Commun. Algebra 32(3), 989–995 (2004).
Cossidente A., Pavese F.: On intriguing sets of finite symplectic spaces. Des. Codes Cryptogr. 86(5), 1161–1174 (2018).
Cossidente A., Penttila T.: Hemisystems on the Hermitian surface. J. Lond. Math. Soc. (2) 72(3), 731–741 (2005).
Cossidente A., Durante N., Marino G., Penttila T., Siciliano A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46(2), 231–241 (2008).
Cossidente A., Marino G., Penttila T.: The action of the group $G_2(q)< {{\rm PSU}} (6, q^2)$, $q$ even, and related combinatorial structures. J. Comb. Des. 21(2), 81–88 (2013).
De Beule J., Metsch K.: On the smallest non-trivial tight sets in Hermitian polar spaces. Electron. J. Comb. 24(1), 1–62 (2017).
De Wispelaere A.: Ovoids and spreads of finite classical generalized hexagons and applications. PhD thesis, Gent University (2005).
Drudge K.: Extremal sets in projective and polar spaces. PhD thesis, The University of Western Ontario (1998).
Drudge K.: On the orbits of Singer groups and their subgroups. Electron. J. Comb. 9(1) (2002).
Dye R.H.: Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114(4), 173–194 (1977).
Dye R.H.: Maximal subgroups of symplectic groups stabilizing spreads. J. Algebra 87, 493–509 (1984).
Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985).
Hirschfeld J.W.P.: Projective Geometries over Finite Fields. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998).
Huppert B.: Endliche Gruppen, I, Die Grundlehren der Mathematischen Wissenschaften, vol. 134. Springer, Berlin (1967).
Kleidman P., Liebeck M.: The Subgroup Structure of the Finite Classical Groups, vol. 129. London Mathematical Society Lecture Note SeriesCambridge University Press, Cambridge (1990).
Lane-Harvard E.: New constructions of strongly regular graphs. Ph.D. thesis, Department of Mathematics, Colorado State University, Fort Collins, Colorado (2014).
Mellinger K.E.: Classical mixed partitions. Discret. Math. 283(1–3), 267–271 (2004).
Pavese F.: Geometric constructions of two-character sets. Discret. Math. 338(3), 202–208 (2015).
Payne S.E.: Tight pointsets in finite generalized quadrangles. In: Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1987, Congr. Numer. vol. 60, pp. 243–260 (1987).
Sved M.: Baer subspaces in the $n$-dimensional projective space. In: Combinatorial Mathematics, X (Adelaide, 1982). Lecture Notes in Mathematics, vol. 1036, pp. 375–391. Springer, Berlin (1983).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Lunardon.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cossidente, A., Pavese, F. On line covers of finite projective and polar spaces. Des. Codes Cryptogr. 87, 1985–2002 (2019). https://doi.org/10.1007/s10623-018-00599-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-018-00599-1