Strongly regular graphs from classical generalized quadrangles | Designs, Codes and Cryptography Skip to main content
Log in

Strongly regular graphs from classical generalized quadrangles

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

If s is an even power of a prime and t equals s or \(s\sqrt{s}\), we show the existence of pseudo-geometric strongly regular graphs having the same parameters of the point-graph of a GQ(st), that are not geometric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barwick S.G., Ai Jackson W., Penttila T.: New families of strongly regular graphs. Preprint arXiv:1606.05380.

  2. Coolsaet K., Degraer J., Spence E.: The strongly regular \((45,12,3,3)\) graphs. Electron. J. Comb. 13(1), R32 (2006).

    MathSciNet  MATH  Google Scholar 

  3. Cossidente A., Pavese F.: On the geometry of unitary involutions. Finite Fields Appl. 36, 14–28 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. Fon-Der-Flaass D.G.: New prolific constructions of strongly regular graphs. Adv. Geom. 2, 301–306 (2002).

    MathSciNet  MATH  Google Scholar 

  5. Godsil C.D., McKay B.D.: Constructing cospectral graphs. Aequationes Math. 25, 257–268 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. Haemers W.H., Spence E.: The pseudo-geometric graphs for generalized quadrangles of order \((3, t)\). Eur. J. Comb. 22(6), 839–845 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. Hui A.M.W., Rodrigues B.: Switched graphs of some strongly regular graphs related to the symplectic graph. Preprint arXiv:1605.07400.

  8. Ihringer F.: A switching for all strongly regular collinearity graphs from polar spaces. Preprint arXiv:1606.05898.

  9. Kantor W.M.: Strongly regular graphs defined by spreads. Israel J. Math. 41, 298–312 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  10. Lane-Harvard E.: New constructions of strongly regular graphs. Ph.D. Thesis, Colorado State University (2014).

  11. Muzychuk M.: A generalization of Wallis–Fon-Der-Flaass construction of strongly regular graph. J. Algebr. Comb. 25, 169–187 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics, vol. 110. Pitman, Boston (1984).

  13. Segre B.: Forme e geometrie hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  14. Spence E.: The strongly regular \((40,12,2,4)\) graphs. Electron. J. Comb. 7, R22 (2000).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pavese.

Additional information

Communicated by D. Ghinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Pavese, F. Strongly regular graphs from classical generalized quadrangles. Des. Codes Cryptogr. 85, 457–470 (2017). https://doi.org/10.1007/s10623-016-0318-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0318-0

Keywords

Mathematics Subject Classification

Navigation