Veronese subspace codes | Designs, Codes and Cryptography Skip to main content
Log in

Veronese subspace codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Using the geometry of quadrics of a projective plane \(\mathrm{PG}(2,q)\) a family of \((6,q^3(q^2-1)(q-1)/3+(q^2+1)(q^2+q+1),4;3)_q\) constant dimension subspace codes is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.D., Brown, J.M.N., Ebert, G.L., Fisher, J.C.: Projective bundles. Bull. Belg. Math. Soc. Simon Stevin 1(3), 329–336 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Baker, R.D., Bonisoli, A., Cossidente, A., Ebert, G.L.: Mixed partitions of PG(5, \(q\)). Discrete Math. 208(209), 23–29 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballico, E., Cossidente, A., Siciliano, A.: External flats to varieties in symmetric product spaces over finite fields. Finite Fields Appl. 9(3), 300–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series 407. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  5. Cannon, J., Playoust, C.: An Introduction to MAGMA. University of Sydney, Sydney (1993)

    Google Scholar 

  6. Cossidente, A., Pavese, F.: On subspace codes. Des. Codes Cryptogr. (to appear). doi:10.1007/s10623-014-0018-6

  7. Figueroa, R.: A family of not \((V, l)\). Math. Z. 181(4), 471–479 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glynn, D.G.: Finite Projective Planes and Related Combinatorial Systems, Ph.D. thesis, Adelaide University (1978)

  9. Glynn, D.G.: On finite division algebras. J. Combin. Theory Ser. A 44(2), 253–266 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Honold, T., Kiermaier, M., Kurz, S.: Optimal binary subspace codes of length \(6\). Contemp. Math.-Am. Math. Soc. 632, 157–176 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hirschfeld, J.W.P.: Projective Geometries over Finite Fields, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998)

  12. Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1985)

  13. Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1991)

  14. Huppert, B.: Endliche Gruppen, I. Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer, Berlin-New York (1967)

  15. Steiner, J.: Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander. Reimer, Berlin (1832)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Additional information

Communicated by J. W. P. Hirschfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Pavese, F. Veronese subspace codes. Des. Codes Cryptogr. 81, 445–457 (2016). https://doi.org/10.1007/s10623-015-0166-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0166-3

Keywords

Mathematics Subject Classification

Navigation