Abstract
By exploring some geometry of Segre varieties and Veronese varieties, new families of non-linear maximum rank distance codes and optimal constant rank codes are provided.
Similar content being viewed by others
References
Bader L., Lunardon G.: On the flocks of \({\cal Q}^+(3, q)\). Geom. Dedicata 29, 177–183 (1989).
Bader L., Cossidente A., Lunardon G.: Generalizing flocks of \({\cal Q}^+(3, q)\). Adv. Geom. 1(4), 323–331 (2001).
Baker R.D., Bonisoli A., Cossidente A., Ebert G.L.: Mixed partitions of \({{\rm PG}}(5, q)\). Discret. Math. 208/209, 23–29 (1999).
Barwick S.G., Jackson W.-A.: Exterior splashes and linear sets of rank \(3\). arXiv:1404.1641.
Bonisoli A., Korchmáros G.: Flocks of hyperbolic quadrics and linear groups containing homologies. Geom. Dedicata 42, 295–309 (1992).
Cannon J., Playoust C.: An Introduction to MAGMA. University of Sydney, Sydney (1993).
Cooperstein B.N.: External flats to varieties in \(PG(M_{n, n}(GF(q)))\). Linear Algebra Appl. 267, 175–186 (1997).
Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory. Ser. A 25, 226–241 (1978).
Dempwolff U.: On the automorphism group of planes of Figueroa type. Rend. Sem. Mat. Univ. Padova 74, 59–62 (1985).
Donati G., Durante N.: Scattered linear sets generated by collineations between pencils of lines. J. Algebr. Comb. 40(4), 1121–1134 (2014).
Durante N., Siciliano A.: \((B)\)-Geometries and flocks of hyperbolic quadrics. J. Comb. Theory Ser. A 102(2), 425–431 (2003).
Etzion T.: Problems on \(q\)-analogs in coding theory. arXiv:1305.6126[cs.IT].
Figueroa R.: A family of not (V, l)- transitive projective planes of order \(q^3, q \lnot \equiv 1\). Math. Z. 181, 471–479 (1982).
Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21, 1–12 (1985).
Gadouleau M., Yan Z.: Properties of codes with the rank metric. In: Global Telecommunications Conference. GLOBECOM ’06, pp. 1–5. IEEE, New York (2006).
Gadouleau M., Yan Z.: Constant-rank codes and their connection to constant-dimension codes. IEEE Trans. Inf. Theory 56(7), 3207–3216 (2010).
Kshevetskiy A., Gabidulin E.M.: The new construction of rank codes. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 2105–2108 (2005).
Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Clarendon Press, Oxford (1998).
Hering C., Schaffer H.-J.: On the new projective planes of R. Figueroa. Comb. Theory, LNM 969, 187–190 (1982).
Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, New York (1991).
Huppert B.: Endliche Gruppen, I, Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer, Berlin (1967).
Koetter R., Kschischang F.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).
Lavrauw M., Van de Voorde G.: Field reduction and linear sets in finite geometry. Contemp. Math. 632, 271–293 (2015).
Lavrauw M., Zanella C.: Subgeometries and linear sets on a projective line. Finite Fields Appl. 34, 95–106 (2015).
Lunardon G., Marino G., Polverino O., Trombetti R.: Maximum scattered linear sets of pseudoregulus type and the Segre variety \({\cal S}_{n, n}\). J. Algebr. Comb. 39, 807–831 (2014).
Nowlin Brown J.M.: Some partitions in Figueroa planes. Note Mat. 29(Suppl. 1), 33–43 (2009).
Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37, 328–336 (1991).
Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964).
Sheekey J.: On Rank Problems for Subspaces of Matrices Over Finite Fields. Ph.D. Thesis, University College Dublin (2011).
Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54, 3951–3967 (2008).
Thas J.A.: Flocks of non-singular ruled quadrics in \({{\rm PG}}(3,q)\). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 59, 83–85 (1975).
Wachter-Zeh A.: Decoding of Block and Convolutional Codes in Rank Metric. Ph.D Thesis, Techion–Israel Institute of Technology (2013).
Acknowledgments
The second author thanks the G.N.S.A.G.A. of I.N.D.A.M. for the financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.
Rights and permissions
About this article
Cite this article
Cossidente, A., Marino, G. & Pavese, F. Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79, 597–609 (2016). https://doi.org/10.1007/s10623-015-0108-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-015-0108-0
Keywords
- Segre variety
- Veronese variety
- Maximum rank distance code
- Constant rank distance code
- Subspace codes
- Singer cyclic group