Non-linear maximum rank distance codes | Designs, Codes and Cryptography Skip to main content
Log in

Non-linear maximum rank distance codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

By exploring some geometry of Segre varieties and Veronese varieties, new families of non-linear maximum rank distance codes and optimal constant rank codes are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bader L., Lunardon G.: On the flocks of \({\cal Q}^+(3, q)\). Geom. Dedicata 29, 177–183 (1989).

  2. Bader L., Cossidente A., Lunardon G.: Generalizing flocks of \({\cal Q}^+(3, q)\). Adv. Geom. 1(4), 323–331 (2001).

  3. Baker R.D., Bonisoli A., Cossidente A., Ebert G.L.: Mixed partitions of \({{\rm PG}}(5, q)\). Discret. Math. 208/209, 23–29 (1999).

  4. Barwick S.G., Jackson W.-A.: Exterior splashes and linear sets of rank \(3\). arXiv:1404.1641.

  5. Bonisoli A., Korchmáros G.: Flocks of hyperbolic quadrics and linear groups containing homologies. Geom. Dedicata 42, 295–309 (1992).

  6. Cannon J., Playoust C.: An Introduction to MAGMA. University of Sydney, Sydney (1993).

  7. Cooperstein B.N.: External flats to varieties in \(PG(M_{n, n}(GF(q)))\). Linear Algebra Appl. 267, 175–186 (1997).

  8. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory. Ser. A 25, 226–241 (1978).

  9. Dempwolff U.: On the automorphism group of planes of Figueroa type. Rend. Sem. Mat. Univ. Padova 74, 59–62 (1985).

  10. Donati G., Durante N.: Scattered linear sets generated by collineations between pencils of lines. J. Algebr. Comb. 40(4), 1121–1134 (2014).

  11. Durante N., Siciliano A.: \((B)\)-Geometries and flocks of hyperbolic quadrics. J. Comb. Theory Ser. A 102(2), 425–431 (2003).

  12. Etzion T.: Problems on \(q\)-analogs in coding theory. arXiv:1305.6126[cs.IT].

  13. Figueroa R.: A family of not (V, l)- transitive projective planes of order \(q^3, q \lnot \equiv 1\). Math. Z. 181, 471–479 (1982).

  14. Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21, 1–12 (1985).

  15. Gadouleau M., Yan Z.: Properties of codes with the rank metric. In: Global Telecommunications Conference. GLOBECOM ’06, pp. 1–5. IEEE, New York (2006).

  16. Gadouleau M., Yan Z.: Constant-rank codes and their connection to constant-dimension codes. IEEE Trans. Inf. Theory 56(7), 3207–3216 (2010).

  17. Kshevetskiy A., Gabidulin E.M.: The new construction of rank codes. In: Proceedings of the IEEE International Symposium on Information Theory, pp. 2105–2108 (2005).

  18. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Clarendon Press, Oxford (1998).

  19. Hering C., Schaffer H.-J.: On the new projective planes of R. Figueroa. Comb. Theory, LNM 969, 187–190 (1982).

  20. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, New York (1991).

  21. Huppert B.: Endliche Gruppen, I, Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer, Berlin (1967).

  22. Koetter R., Kschischang F.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).

  23. Lavrauw M., Van de Voorde G.: Field reduction and linear sets in finite geometry. Contemp. Math. 632, 271–293 (2015).

  24. Lavrauw M., Zanella C.: Subgeometries and linear sets on a projective line. Finite Fields Appl. 34, 95–106 (2015).

  25. Lunardon G., Marino G., Polverino O., Trombetti R.: Maximum scattered linear sets of pseudoregulus type and the Segre variety \({\cal S}_{n, n}\). J. Algebr. Comb. 39, 807–831 (2014).

  26. Nowlin Brown J.M.: Some partitions in Figueroa planes. Note Mat. 29(Suppl. 1), 33–43 (2009).

  27. Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37, 328–336 (1991).

  28. Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964).

  29. Sheekey J.: On Rank Problems for Subspaces of Matrices Over Finite Fields. Ph.D. Thesis, University College Dublin (2011).

  30. Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54, 3951–3967 (2008).

  31. Thas J.A.: Flocks of non-singular ruled quadrics in \({{\rm PG}}(3,q)\). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 59, 83–85 (1975).

  32. Wachter-Zeh A.: Decoding of Block and Convolutional Codes in Rank Metric. Ph.D Thesis, Techion–Israel Institute of Technology (2013).

Download references

Acknowledgments

The second author thanks the G.N.S.A.G.A. of I.N.D.A.M. for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Marino, G. & Pavese, F. Non-linear maximum rank distance codes. Des. Codes Cryptogr. 79, 597–609 (2016). https://doi.org/10.1007/s10623-015-0108-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0108-0

Keywords

Mathematics Subject Classification

Navigation