On subspace codes | Designs, Codes and Cryptography Skip to main content
Log in

On subspace codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It is shown that any projective bundle of \(\mathrm{PG}(2,q)\) gives rise to a \(q\)-ary \((6, q^{6}\) \(+2q^{2}+2q+1,4;3)\) subspace code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker R.D., Brown J.M.N., Ebert G.L., Fisher J.C.: Projective bundles. Bull. Belg. Math. Soc. Simon Stevin. 1(3), 329–336 (1994).

  2. Bray J.N., Holt D.F., Roney-Dougal Derek, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013).

  3. Cannon J., Playoust C.: An introduction to MAGMA. University of Sydney, Sydney (1993).

  4. Glynn D.G.: Finite projective planes and related combinatorial systems. Ph.D. thesis, Adelaide University (1978).

  5. Glynn D.G.: On finite division algebras. J. Comb. Theory Ser. A. 44(2), 253–266 (1987).

  6. Hirschfeld J.W.P.H.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1985).

  7. Hirschfeld J.W.P.H.: Projective Geometries over Finite Fields. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998).

  8. Honold T., Kiermaier M., Kurz S.: Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum distance \(4\). arXiv:1311.0464v1, preprint.

  9. Huppert B.: Endliche Gruppen, I. Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer, Berlin (1967).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Additional information

Communicated by L. Storme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Pavese, F. On subspace codes. Des. Codes Cryptogr. 78, 527–531 (2016). https://doi.org/10.1007/s10623-014-0018-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-0018-6

Keywords

Mathematics Subject Classification

Navigation