Abstract
In this paper, we show that a small minimal blocking set with exponent e in PG(n, p t), p prime, spanning a (t/e − 1)-dimensional space, is an \({\mathbb{F}_{p^e}}\) -linear set, provided that p > 5(t/e)−11. As a corollary, we get that all small minimal blocking sets in PG(n, p t), p prime, p > 5t − 11, spanning a (t − 1)-dimensional space, are \({\mathbb{F}_p}\) -linear, hence confirming the linearity conjecture for blocking sets in this particular case.
Similar content being viewed by others
References
Ball S.: The number of directions determined by a function over a finite field. J. Comb. Theory Ser. A 104(2), 341–350 (2003)
Blokhuis A.: On the size of a blocking set in PG(2, p). Combinatorica 14(1), 111–114 (1994)
Blokhuis A., Ball S., Brouwer A.E., Storme L., Szőnyi T.: On the number of slopes of the graph of a function defined on a finite field. J. Comb. Theory Ser. A 86(1), 187–196 (1999)
Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois planes. Adv. Geom. 7(1), 39–53 (2007)
Heim U.: Proper blocking sets in projective spaces. Discret. Math. 174(1–3), 167–176 (1997)
Lavrauw M., Storme L., Vande Voorde G.: On the code generated by the incidence matrix of points and k-spaces in PG(n, q) and its dual. Finite Fields Appl. 14(4), 1020–1038 (2008)
Lavrauw M., Vande Voorde G.: On linear sets on a projective line. Des. Codes Cryptogr. 56(2–3), 89–104 (2010)
Polverino O.: Small blocking sets in PG(2, p 3). Des. Codes Cryptogr. 20(3), 319–324 (2000)
Storme L., Sziklai P.: Linear pointsets and Rédei type k-blocking sets in PG(n, q). J. Algebraic Comb. 14(3), 221–228 (2001)
Storme L., Weiner Zs.: On 1-blocking sets in PG(n, q), n ≥ 3. Des. Codes Cryptogr. 21(1–3), 235–251 (2000)
Szőnyi T.: Blocking sets in desarguesian affine and projective planes. Finite Fields Appl. 3(3), 187–202 (1997)
Szőnyi T., Weiner Zs.: Small blocking sets in higher dimensions. J. Comb. Theory Ser. A 95(1), 88–101 (2001)
Sziklai P.: On small blocking sets and their linearity. J. Comb. Theory Ser. A 115(7), 1167–1182 (2008)
Van de Voorde G.: On the linearity of higher-dimensional blocking sets. Electron. J. Comb. 17(1), Research Paper 174, 16 pp (2010).
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.
Rights and permissions
About this article
Cite this article
Sziklai, P., Van de Voorde, G. A small minimal blocking set in PG(n, p t), spanning a (t − 1)-space, is linear. Des. Codes Cryptogr. 68, 25–32 (2013). https://doi.org/10.1007/s10623-012-9751-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9751-x