Generating pairing-friendly parameters for the CM construction of genus 2 curves over prime fields | Designs, Codes and Cryptography
Skip to main content

Generating pairing-friendly parameters for the CM construction of genus 2 curves over prime fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present two contributions in this paper. First, we give a quantitative analysis of the scarcity of pairing-friendly genus 2 curves. This result is an improvement relative to prior work which estimated the density of pairing-friendly genus 2 curves heuristically. Second, we present a method for generating pairing-friendly parameters for which \({\rho\approx 8}\) , where ρ is a measure of efficiency in pairing-based cryptography. This method works by solving a system of equations given in terms of coefficients of the Frobenius element. The algorithm is easy to understand and implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan J., Belding J., Chisholm S., Eisenträger K., Stange K., Teske E.: Pairings on hyperelliptic curves. http://arxiv.org/PS_cache/arxiv/pdf/0908/0908.3731v2.pdf.

  2. Balasubramanian R., Koblitz N.: The improbability that an elliptic curve has subexponential discrete log problem under the Menezes–Okamoto–Vanstone algorithm. J. Cryptol. 11(2), 141–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardona G., Quer J.: Field of moduli and field of definition for curves of genus 2. In: Shaska, T. (ed.) Computational Aspects of Algebraic Curves, vol. 13, pp. 71–83. World Scientific Publications, Hackensack (2005)

    Chapter  Google Scholar 

  5. Eisenträger K., Lauter K.: A CRT algorithm for constructing genus 2 curves over finite fields. In: Arithmetic, Geometry and Coding Theory AGCT-10 (2005), Séminaires et Congrés 21, pp. 161–176. Société Mathématique de France, Paris (2009).

  6. Freeman D.: Constructing pairing-friendly genus 2 curves over prime fields with ordinary Jacobians. In: Proceedings of Pairing-Based Cryptography (Pairing 2007), vol. 4575 of LNCS, pp. 152–176. Springer, Heidelberg (2007).

  7. Freeman D.: A generalized Brezing-Weng algorithm for constructing pairing-friendly ordinary abelian varieties. In: Galbraith, S, Paterson, K (eds) Pairing-Based Cryptography—Pairing 2008, vol. 5209 of Lecture Notes in Computer Science, pp. 146–163. Springer, Berlin (2008)

    Google Scholar 

  8. Freeman D., Stevenhagen P., Streng M.: Abelian varieties with prescribed embedding degree. In: Algorithmic Number Theory VIII, pp. 60–73. Springer, Heidelberg (2008).

  9. Freeman D., Scott M., Teske E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23, 224–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freeman D.M., Satoh T.: Constructing pairing-friendly hyperelliptic curves using Weil restriction. J. Number Theory 131(5), 959–983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furukawa E., Kawazoe M., Takahashi T.: Counting points for hyperelliptic curves of type y 2x 5ax over finite prime fields. In: Matsui, M, Zuccherato, R (eds) Selected Areas in Cryptography, vol. 3006 of Lecture Notes in Computer Science, pp. 26–41. Springer, Berlin (2004)

    Google Scholar 

  12. Galbraith S.D., McKee J.F., Valenca P.C.: Ordinary abelian varieties having small embedding degree. Finite Fields Appl. 13(4), 800–814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaudry P., Harley R.: Counting points on hyperelliptic curves over finite fields. In: Bosma, W (ed.) Algorithmic Number Theory, vol. 1838 of Lecture Notes in Computer Science, pp. 313–332. Springer, Berlin (2000)

    Google Scholar 

  14. Gaudry P., Houtmann T., Kohel D., Ritzenthaler C., Weng A.: The 2-adic CM method for genus 2 curves with application to cryptography. In: Lai, X, Chen, K (eds.) Advances in Cryptology ASIACRYPT 2006, vol. 4284 of Lecture Notes in Computer Science, pp. 114–129. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Hitt L.: Families of genus 2 curves with small embedding degree. J. Math. Cryptol. 3(1), 19–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huxley M.N.: On the difference between consecutive primes. Invent. Math. 15, 164–170 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawazoe M., Takahashi T.: Pairing-friendly hyperelliptic curves with ordinary Jacobians of type y 2x 5ax. In: Galbraith, S, Paterson, K (eds.) Pairing-Based Cryptography—Pairing 2008, vol. 5209 of Lecture Notes in Computer Science, pp. 164–177. Springer, Berlin (2008)

    Google Scholar 

  18. Lenstra H.W. Jr., Pila J., Pomerance C.: A hyperelliptic smoothness test, II. Proc. Lond. Math. Soc. 84(1), 105–146 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mestre J.-F.: Construction de courbes de genre 2 à à partir de leurs modules (Construction of genus 2 curves starting from their moduli). In: Effective Methods in Algebraic Geometry, Proceedings of Symposium on Castiglioncello/Italy 1990, Progress in Mathematics, vol. 94, pp. 313–334. Birkhäuser, Basel (1991).

  20. Pohlig S., Hellman M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rubin K., Silverberg A.: Supersingular abelian varieties in cryptology. In: Yung, M (ed.) Advances in Cryptology—CRYPTO 2002, vol. 2442 of Lecture Notes in Computer Science, pp. 336–353. Springer, Berlin (2002)

    Google Scholar 

  22. Shang N.: Low genus algebraic curves in cryptography. PhD thesis, Purdue University, West Lafayette, USA, January 2009. https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2009-07.pdf.

  23. Van Wamelen P.: Examples of genus two CM curves defined over the rationals. Math. Comput. 68(225), 307–320 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weil A.: Variétés Abéliennes et Courbes Algébriques. Hermann, Paris (1948)

    MATH  Google Scholar 

  25. Weng A.: Constructing hyperelliptic curves of genus 2 suitable for cryptography. Math. Comput. 72(241), 435–458 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Shang.

Additional information

Communicated by A. Enge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauter, K., Shang, N. Generating pairing-friendly parameters for the CM construction of genus 2 curves over prime fields. Des. Codes Cryptogr. 67, 341–355 (2013). https://doi.org/10.1007/s10623-012-9611-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9611-8

Keywords

Mathematics Subject Classification (2000)