Abstract
In this work, we give the expectation and the covariance formulas for the support weight distributions of linear codes.
Similar content being viewed by others
References
Blinovsky V., Erez U., Litsyn S.: Weight distribution moments of random linear/coset codes. Des. Codes Cryptogr. 57, 127–138 (2010)
Britz T.: Higher support matroids. Discret. Math. 307, 2300–2308 (2007)
Gallager R.G.: Low Density Parity-Check Codes. MIT Press, Cambridge (1963)
Helleseth T., Kløve T., Mykkeltveit J.: The weight distribution of irreducible cyclic codes with block length n 1 ((q l − 1)/N). Discret. Math. 18, 179–211 (1977)
Helleseth T., Kløve T., Ytrehus O.: Generalized Hamming weights of linear codes. IEEE Trans. Inform. Theory 38, 1133–1140 (1992)
Helleseth T., Kløve T., Levenshtein V.I., Ytrehus O.: Bounds on the minimum support weights. IEEE Trans. Inform. Theory 41, 432–440 (1995)
Kac V., Cheung P.: Quantum Calculus. Springer, Universitext (2001)
Kasami T., Takata T., Fujiwara T., Lin S.: On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes. IEEE Trans. Inform. Theory 39, 242–245 (1993)
Kløve T.: Support weight distribution of linear codes. Discret. Math. 106/107, 311–316 (1992)
Klyachko A.A., Özen I.: Correlations between the ranks of submatrices and weights of random codes. Finite Fields Appl. 15, 497–516 (2009)
Tsfasman M.A., Vladut S.G.: Algebraic Geometric Codes. Kluwer Academic Publishers, Dordrecht (1991)
Tsfasman M.A., Vladut S.G.: Geometric approach to higher weights. IEEE Trans. Inform. Theory 41(6), 1564–1588 (1995)
van Lint J.H., Wilson R.M.: A Course in Combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)
Wei V.: Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 37(5), 1412–1418 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by T. Helleseth.
Rights and permissions
About this article
Cite this article
Özen, İ., Tekin, E. Moments of the support weight distribution of linear codes. Des. Codes Cryptogr. 67, 187–196 (2013). https://doi.org/10.1007/s10623-011-9597-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9597-7