Projective k-arcs and 2-level secret-sharing schemes | Designs, Codes and Cryptography Skip to main content
Log in

Projective k-arcs and 2-level secret-sharing schemes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Motivated by applications to 2-level secret sharing schemes, we investigate k-arcs contained in a (q + 1)-arc Γ of PG(3, q), q even, which have only a small number of focuses on a real axis of Γ. Doing so, we also investigate hyperfocused and sharply focused arcs contained in a translation oval of PG(2, q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beato A., Faina G., Giulietti M.: Arcs in Desarguesian nets. Contrib. Discret. Math. 3, 96–108 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Beutelspacher A., Wettl F.: On 2-level secret sharing. Des. Codes Cryptogr. 3, 127–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bichara A., Korchmáros G.: Note on (q + 2)-sets in a Galois plane of order q. In: Combinatorial and Geometric Structures and Their Applications (Trento, 1980). Annals of Discrete Mathematics, vol. 14, pp. 117–121. North-Holland, Amsterdam (1982).

  4. Cherowitzo W.E., Holder L.D.: Hyperfocused arcs. Bull. Belg. Math. Soc. Simon Stevin 12, 685–696 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Giulietti M., Montanucci E.: On hyperfocused arcs in PG(2, q). Discret. Math. 306, 3307–3314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giulietti M., Vincenti R.: Three-level secret sharing schemes from the twisted cubic. Discret. Math. 310(22), 3236–3240 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirschfeld J.W.P.: Ovals in Desarguesian planes of even order. Ann. Mat. Pura Appl. (4) 102, 79–89 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1985)

    Google Scholar 

  9. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1998)

    Google Scholar 

  10. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press/Oxford Science Publications, New York (1991)

    Google Scholar 

  11. Holder L.D.: The construction of geometric threshold schemes with projective geometry. Master’s thesis, University of Colorado, Denver (1997).

  12. Hua L.-K.: Some properties of a sfield. Proc. Natl. Acad. Sci. U.S.A. 35, 533–537 (1949)

    Article  MATH  Google Scholar 

  13. Jacobson N.: Basic Algebra I. W. H. Freeman & Co., San Francisco (1974).

  14. Korchmáros G., Szőnyi T.: Affinely regular polygons in an affine plane. Contrib. Discret. Math. 3, 20–38 (2008)

    MATH  Google Scholar 

  15. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. Mattarei S.: Inverse-closed additive subgroups of fields. Israel J. Math. 159, 343–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parrettini C., Pasticci F.: Hyperfocused arcs in PG(2, 32). Preprint.

  18. Payne S.E.: A complete determination of translation ovoids in finite Desarguesian planes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 51(1971), 328–331 (1972)

    MATH  Google Scholar 

  19. Segre B.: Ovali e curve σ nei piani di Galois di caratteristica 2. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 32, 785–790 (1962)

    MathSciNet  MATH  Google Scholar 

  20. Simmons G.J.: Sharply focused sets of lines on a conic in PG (2, q). Congr. Numer. 73, 181–204 (1990). In: Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL (1989).

  21. Simmons G.J.: How to (really) share a secret. In: Advances in Cryptology—CRYPTO ’88 (Santa Barbara, CA, 1988). Lecture Notes in Computer Science, vol. 403, pp. 390–448. Springer, Berlin (1990).

  22. Wettl F.: On the nuclei of a pointset of a finite projective plane. J. Geom. 30, 157–163 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Sonnino.

Additional information

This is one of several papers published together in Designs, Codes and Cryptography on the special topic: “Geometry, Combinatorial Designs & Cryptology”.

This research was supported by the TÁMOP-4.2.2/08/1/2008-0008 program of the Hungarian National Development Agency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchmáros, G., Lanzone, V. & Sonnino, A. Projective k-arcs and 2-level secret-sharing schemes. Des. Codes Cryptogr. 64, 3–15 (2012). https://doi.org/10.1007/s10623-011-9562-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9562-5

Keywords

Mathematics Subject Classification (2000)

Navigation