Abstract
Motivated by applications to 2-level secret sharing schemes, we investigate k-arcs contained in a (q + 1)-arc Γ of PG(3, q), q even, which have only a small number of focuses on a real axis of Γ. Doing so, we also investigate hyperfocused and sharply focused arcs contained in a translation oval of PG(2, q).
Similar content being viewed by others
References
Beato A., Faina G., Giulietti M.: Arcs in Desarguesian nets. Contrib. Discret. Math. 3, 96–108 (2008)
Beutelspacher A., Wettl F.: On 2-level secret sharing. Des. Codes Cryptogr. 3, 127–134 (1993)
Bichara A., Korchmáros G.: Note on (q + 2)-sets in a Galois plane of order q. In: Combinatorial and Geometric Structures and Their Applications (Trento, 1980). Annals of Discrete Mathematics, vol. 14, pp. 117–121. North-Holland, Amsterdam (1982).
Cherowitzo W.E., Holder L.D.: Hyperfocused arcs. Bull. Belg. Math. Soc. Simon Stevin 12, 685–696 (2005)
Giulietti M., Montanucci E.: On hyperfocused arcs in PG(2, q). Discret. Math. 306, 3307–3314 (2006)
Giulietti M., Vincenti R.: Three-level secret sharing schemes from the twisted cubic. Discret. Math. 310(22), 3236–3240 (2010).
Hirschfeld J.W.P.: Ovals in Desarguesian planes of even order. Ann. Mat. Pura Appl. (4) 102, 79–89 (1975)
Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1985)
Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1998)
Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press/Oxford Science Publications, New York (1991)
Holder L.D.: The construction of geometric threshold schemes with projective geometry. Master’s thesis, University of Colorado, Denver (1997).
Hua L.-K.: Some properties of a sfield. Proc. Natl. Acad. Sci. U.S.A. 35, 533–537 (1949)
Jacobson N.: Basic Algebra I. W. H. Freeman & Co., San Francisco (1974).
Korchmáros G., Szőnyi T.: Affinely regular polygons in an affine plane. Contrib. Discret. Math. 3, 20–38 (2008)
Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)
Mattarei S.: Inverse-closed additive subgroups of fields. Israel J. Math. 159, 343–348 (2007)
Parrettini C., Pasticci F.: Hyperfocused arcs in PG(2, 32). Preprint.
Payne S.E.: A complete determination of translation ovoids in finite Desarguesian planes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 51(1971), 328–331 (1972)
Segre B.: Ovali e curve σ nei piani di Galois di caratteristica 2. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 32, 785–790 (1962)
Simmons G.J.: Sharply focused sets of lines on a conic in PG (2, q). Congr. Numer. 73, 181–204 (1990). In: Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL (1989).
Simmons G.J.: How to (really) share a secret. In: Advances in Cryptology—CRYPTO ’88 (Santa Barbara, CA, 1988). Lecture Notes in Computer Science, vol. 403, pp. 390–448. Springer, Berlin (1990).
Wettl F.: On the nuclei of a pointset of a finite projective plane. J. Geom. 30, 157–163 (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published together in Designs, Codes and Cryptography on the special topic: “Geometry, Combinatorial Designs & Cryptology”.
This research was supported by the TÁMOP-4.2.2/08/1/2008-0008 program of the Hungarian National Development Agency.
Rights and permissions
About this article
Cite this article
Korchmáros, G., Lanzone, V. & Sonnino, A. Projective k-arcs and 2-level secret-sharing schemes. Des. Codes Cryptogr. 64, 3–15 (2012). https://doi.org/10.1007/s10623-011-9562-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9562-5