Abstract
Recently there has been a lot of interest on algebraic codes in the setting of skew polynomial rings. In this paper we have studied skew quasi-cyclic (QC) codes over Galois rings. We have given a necessary and sufficient condition for skew cyclic codes over Galois rings to be free, and determined a distance bound for free skew cyclic codes. A sufficient condition for 1-generator skew QC codes to be free is determined. Some distance bounds for free 1-generator skew QC codes are discussed. A canonical decomposition of skew QC codes is presented.
Similar content being viewed by others
References
Abualrub T., Ghrayeb A., Aydin N., Siap I.: On the construction of skew quasi-cyclic codes. IEEE Trans. Inform. Theory 56, 2081–2090 (2010)
Aydin N., Ray-Chaudhuri D.K.: Quasi-cyclic codes over \({\mathbb{Z}_4}\) and some new binary codes. IEEE Trans. Inform. Theory 7, 2065–2069 (2002)
Bhaintwal M., Wasan S.K.: On quasi-cyclic codes over \({\mathbb{Z}_q}\). Appl. Algebra Engrg. Comm. Comput. 20, 459–480 (2009)
Boucher D., Geiselmann W., Ulmer F.: Skew-cyclic codes. Appl. Algebra Engrg. Comm. Comput. 18, 379–389 (2007)
Boucher D., Solé P., Ulmer F.: Skew constacyclic codes over Galois rings. Adv. Math. Commun. 2, 273–292 (2008)
Boucher D., Ulmer F.: Coding with skew polynomial rings. J. Symbolic Comput. 44, 1644–1656 (2009)
Boucher D., Ulmer F.: Codes as modules over skew polynomial rings. In: Parker M. G. (ed.) Cryptography and coding 2009. Lecture Notes in Computer Science, vol. 5921, pp. 38–55. Springer-Verlag, Heidelberg (2009).
Chaussade L., Loidreau P., Ulmer F.: Skew codes of prescribed distance or rank. Des. Codes Cryptogr. 50, 267–284 (2009)
Cohn P.M.: Skew fields: theory of general division rings. Encyclopedia in Mathematics, vol. 57. Cambridge University Press, Cambridge (1995).
Conan J., Séguin G.: Structural properties and enumeration of quasi-cyclic codes. Appl. Algebra Engrg. Commun. Comput. 4, 25–39 (1993)
Jacobson N.: Theory of Rings. Am. Math. Soc., New York (1943)
Jacobson N.: Finite Dimensional Division Algebras over Fields. Springer, New York (1996)
Lally K.: Quasi-cyclic codes of index l over \({\mathbb{F}_q}\) viewed as \({\mathbb{F}_q[x]}\)-submodules of \({\mathbb{F}_{q^l}[x]/\langle x^m - 1 \rangle}\). In: Fossorier M., Hoeholdt T., Poli A. (eds.) Proceedings of AAECC-15, Lecture Note in Computer Science, vol. 2643, pp. 244–253, Springer-Verlag, Heidelberg (2003).
Ling S., Solé P.: On the algebraic structures of quasi-cyclic codes I: finite fields. IEEE Trans. Inform. Theory 47, 2751–2760 (2001)
Ling S., Solé P.: On the algebraic structures of quasi-cyclic codes II: chain rings. Des. Codes Cryptogr. 30, 113–130 (2003)
Ling S., Solé P.: On the algebraic structures of quasi-cyclic codes III: generator theory. IEEE Trans. Inform. Theory 51, 2692–2700 (2005)
McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)
Siap I., Abualrub T., Aydin N., Seneviratne P.: Skew cyclic codes of arbitrary length. Int. J. Inform. Coding Theory (2010) (to appear).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. D. Key.
Rights and permissions
About this article
Cite this article
Bhaintwal, M. Skew quasi-cyclic codes over Galois rings. Des. Codes Cryptogr. 62, 85–101 (2012). https://doi.org/10.1007/s10623-011-9494-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9494-0