Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points | Designs, Codes and Cryptography
Skip to main content

Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The main result of this paper is that point sets of PG(n, q 3), q = p h, p ≥ 7 prime, of size less than 3(q 3(nk) + 1)/2 intersecting each k-space in 1 modulo q points (these are always small minimal blocking sets with respect to k-spaces) are linear blocking sets. As a consequence, we get that minimal blocking sets of PG(n, p 3), p ≥ 7 prime, of size less than 3(p 3(nk) + 1)/2 with respect to k-spaces are linear. We also give a classification of small linear blocking sets of PG(n, q 3) which meet every (n − 2)-space in 1 modulo q points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blokhuis A., Lavrauw M.: Scattered spaces with respect to a spread in PG(n, q). Geom. Dedicata 81, 231–243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald Codes. J. Comb. Theory 1, 96–104 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  • Harrach N.V., Metsch K., Szőnyi T., Weiner Zs.: Small point sets of PG(n, p 3h) intersecting each line in 1 mod p h points. J. Geom. (submitted).

  • Lavrauw M., Storme L., Van de Voorde G.: A proof for the linearity conjecture for k-blocking sets in PG(n, p 3), p prime. J. Comb. Theory A (submitted).

  • Lunardon G., Polverino O.: Translation ovoids of orthogonal polar spaces. Forum Math. 16, 663–669 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Polverino O.: Small minimal blocking sets and complete k-arcs in PG(2,p 3). Discrete Math. 208/209, 469–476 (1999)

    Article  MathSciNet  Google Scholar 

  • Polverino O., Storme L.: Small minimal blocking sets in PG(2, q 3). Eur. J. Comb. 23, 83–92 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Storme L., Weiner Zs.: On 1-blocking sets in PG(n, q), n ≥ 3. Des. Codes Cryptogr. 21, 235–251 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Sziklai P.: A bound on the number of points of a plane curve. Finite Fields Appl. 14, 41–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Sziklai P.: On small blocking sets and their linearity. J. Comb. Theory A 115, 1167–1182 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Szőnyi T.: Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3, 187–202 (1997)

    Article  MathSciNet  Google Scholar 

  • Szőnyi T., Weiner Zs.: Small blocking sets in higher dimensions. J. Comb. Theory A 95, 88–101 (2001)

    Article  Google Scholar 

  • Weiner Zs.: Small point sets of PG(n, q) intersecting each k-space in 1 modulo \({\sqrt q}\) points. Innov. Incidence Geom. 1, 171–180 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nóra V. Harrach.

Additional information

Communicated by Leo Storme.

Dedicated to the memory of András Gács (1969–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrach, N.V., Metsch, K. Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points. Des. Codes Cryptogr. 56, 235–248 (2010). https://doi.org/10.1007/s10623-010-9407-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9407-7

Keywords

Mathematics Subject Classification (2000)