The small weight codewords of the functional codes associated to non-singular Hermitian varieties | Designs, Codes and Cryptography
Skip to main content

The small weight codewords of the functional codes associated to non-singular Hermitian varieties

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This article studies the small weight codewords of the functional code C Herm (X), with X a non-singular Hermitian variety of PG(N, q 2). The main result of this article is that the small weight codewords correspond to the intersections of X with the singular Hermitian varieties of PG(N, q 2) consisting of q + 1 hyperplanes through a common (N − 2)-dimensional space Π, forming a Baer subline in the quotient space of Π. The number of codewords having these small weights is also calculated. In this way, similar results are obtained to the functional codes C 2(Q), Q a non-singular quadric (Edoukou et al., J. Pure Appl. Algebra 214:1729–1739, 2010), and C 2(X), X a non-singular Hermitian variety (Hallez and Storme, Finite Fields Appl. 16:27–35, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Edoukou F.A.B.: Codes correcteurs d’erreurs construits à partir des variétés algébriques. PhD thesis, Université de la Méditerranée (Aix-Marseille II), France (2007).

  • Edoukou F.A.B.: Codes defined by forms of degree 2 on quadric surfaces. IEEE Trans. Inform. Theory 54(2), 860–864 (2008)

    Article  MathSciNet  Google Scholar 

  • Edoukou F.A.B., Ling S., Xing C.: New informations on the structure of the functional codes defined by forms of degree h on non-degenerate Hermitian varieties in \({\mathbb{P}^n(\mathbb{F}_q)}\) . arXiv: 0907.4548, under submission.

  • Edoukou F.A.B., Hallez A., Rodier F., Storme L.: On the small weight codewords of the functional codes C 2(Q) , Q a non-singular quadric. J. Pure Appl. Algebra 214, 1729–1739 (2010)

    Article  MATH  Google Scholar 

  • Hallez A., Storme L.: Functional codes arising from quadric intersections with Hermitian varieties. Finite Fields Appl. 16, 27–35 (2010)

    Article  MathSciNet  Google Scholar 

  • Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  • Hirschfeld J.W.P., Thas J.A.: General Galois Geometries, Oxford Mathematical Monographs. Oxford University Press, Oxford (1991)

    Google Scholar 

  • Katz N.M.: On a Theorem of Ax. Amer J. Math. 93(2), 485–499 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Kestenband B.C.: Projective geometries that are disjoint unions of caps. Can. J. Math. 32(6), 1299–1305 (1980)

    MATH  MathSciNet  Google Scholar 

  • Kestenband B.C.: Hermitian configurations in odd-dimensional projective geometries. Can. J. Math. 33(2), 500–512 (1981)

    MATH  MathSciNet  Google Scholar 

  • Lachaud G.: Number of points of plane sections and linear codes defined on algebraic varieties. In: Arithmetic, Geometry, and Coding Theory (Luminy, France, 1993), pp. 77–104. Walter De Gruyter, Berlin, New York (1996).

  • Metsch K.: The sets closest to ovoids in Q (2n + 1, q). Finite geometry and combinatorics (Deinze, 1997). Bull. Belg. Math. Soc. Simon Stevin 5, 389–392 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Storme.

Additional information

Communicated by J. D. Key.

Dedicated to the memory of András Gács (1969–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edoukou, F.A.B., Hallez, A., Rodier, F. et al. The small weight codewords of the functional codes associated to non-singular Hermitian varieties. Des. Codes Cryptogr. 56, 219–233 (2010). https://doi.org/10.1007/s10623-010-9401-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9401-0

Keywords

Mathematics Subject Classification (2000)