Abstract
We derive lower and upper bounds for the size of a hyperoval of a finite polar space of rank 3. We give a computer-free proof for the uniqueness, up to isomorphism, of the hyperoval of size 126 of H(5, 4) and prove that the near hexagon \({\mathbb E_3}\) has up to isomorphism a unique full embedding into the dual polar space DH(5, 4).
Similar content being viewed by others
References
Aschbacher M.: Flag structures on Tits geometries. Geom. Dedicata. 14, 21–32 (1983)
Blok R.J., Brouwer A.E.: The geometry far from a residue. Groups and geometries (Siena, 1996), 29–38, Trends Math., Birkhäuser, Basel (1998).
Blokhuis A., Brouwer A.E.: Uniqueness of a Zara graph on 126 points and non-existence of a completely regular two-graph on 288 points. EUT-Rep., Eindhoven 84-WSK-03, 6–19 (1984).
Brouwer A.E., Wilbrink H.A.: The structure of near polygons with quads. Geom. Dedicata 14, 145–176 (1983)
Brouwer A.E., Cohen A.M., Hall J.I., Wilbrink H.A.: Near polygons and Fischer spaces. Geom. Dedicata 49, 349–368 (1994)
Buekenhout F., Hubaut X.: Locally polar spaces and related rank 3 groups. J. Algebra 45, 391–434 (1977)
Cameron P.J.: Dual polar spaces. Geom. Dedicata 12, 75–85 (1982)
Cameron P.J., Hughes D.R., Pasini A.: Extended generalized quadrangles. Geom. Dedicata 35, 193–228 (1990)
Cohen A.M., Shult E.E.: Affine polar spaces. Geom. Dedicata 35, 43–76 (1990)
De Bruyn B.: On the uniqueness of near polygons with three points on every line. Eur. J. Combin. 23, 523–528 (2002)
De Bruyn B.: Near Polygons. Birkhäuser, Basel (2006).
De Bruyn B.: Isometric full embeddings of DW(2n − 1, q) into DH(2n − 1, q 2). Finite Fields Appl. 14, 188–200 (2008)
De Bruyn B.: Two new classes of hyperplanes of the dual polar space DH(2n − 1, 4) not arising from the Grassmann-embedding. Linear Algebra Appl. 429, 2030–2045 (2008)
Del Fra A., Ghinelli D., Payne S.E.: (0,n)-sets in a generalized quadrangle. Combinatorics ’ 90 (Gaeta, 1990). Ann. Discret. Math. 52, 139–157 (1992)
Hirschfeld J.W.P.: Finite projective spaces of three dimensions. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985).
Hirschfeld J.W.P.: Projective geometries over finite fields. Second edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, (1998).
Huang W.-L.: Adjacency preserving mappings between point-line geometries. Innov. Incid. Geom. 3, 25–32 (2006)
Makhnev A.A.: Extensions of GQ(4,2), the description of hyperovals. Discret. Math. Appl. 7, 419–435 (1997)
Makhnev A.A.: Locally GQ(3,5)-graphs and geometries with short lines. Discret. Math. Appl. 8, 275–290 (1998)
Pasechnik D.: Geometric characterization of the sporadic groups Fi22, Fi23, and Fi24. J. Combin. Theory Ser. A 68, 100–114 (1994)
Pasechnik D.: Extending polar spaces of rank at least 3. J. Combin. Theory Ser. A 72, 232–242 (1995)
Pasechnik D.: The triangular extensions of a generalized quadrangle of order (3,3). Bull. Belg. Math. Soc. Simon Stevin. 2, 509–518 (1995)
Pasechnik D.: The extensions of the generalized quadrangle of order (3,9). Eur. J. Combin. 17, 751–755 (1996)
Pasini A., Shpectorov S.: Uniform hyperplanes of finite dual polar spaces of rank 3. J. Combin. Theory Ser. A 94, 276–288 (2001)
Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics 110. Pitman, Boston (1984).
Shult E.E.: On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin. 4, 299–316 (1997)
Shult E.E., Yanushka A.: Near n-gons and line systems. Geom. Dedicata 9, 1–72 (1980)
Tits J.: Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics 386. Springer, Berlin (1974)
Zara F.: Graphes liés aux espaces polaires. Eur. J. Combin. 5, 255–290 (1984)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Leo Storme.
Dedicated to the memory of András Gács (1969–2009).
Rights and permissions
About this article
Cite this article
De Bruyn, B. On hyperovals of polar spaces. Des. Codes Cryptogr. 56, 183–195 (2010). https://doi.org/10.1007/s10623-010-9400-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9400-1