On hyperovals of polar spaces | Designs, Codes and Cryptography Skip to main content
Log in

On hyperovals of polar spaces

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We derive lower and upper bounds for the size of a hyperoval of a finite polar space of rank 3. We give a computer-free proof for the uniqueness, up to isomorphism, of the hyperoval of size 126 of H(5, 4) and prove that the near hexagon \({\mathbb E_3}\) has up to isomorphism a unique full embedding into the dual polar space DH(5, 4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschbacher M.: Flag structures on Tits geometries. Geom. Dedicata. 14, 21–32 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blok R.J., Brouwer A.E.: The geometry far from a residue. Groups and geometries (Siena, 1996), 29–38, Trends Math., Birkhäuser, Basel (1998).

  3. Blokhuis A., Brouwer A.E.: Uniqueness of a Zara graph on 126 points and non-existence of a completely regular two-graph on 288 points. EUT-Rep., Eindhoven 84-WSK-03, 6–19 (1984).

    Google Scholar 

  4. Brouwer A.E., Wilbrink H.A.: The structure of near polygons with quads. Geom. Dedicata 14, 145–176 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brouwer A.E., Cohen A.M., Hall J.I., Wilbrink H.A.: Near polygons and Fischer spaces. Geom. Dedicata 49, 349–368 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buekenhout F., Hubaut X.: Locally polar spaces and related rank 3 groups. J. Algebra 45, 391–434 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cameron P.J.: Dual polar spaces. Geom. Dedicata 12, 75–85 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cameron P.J., Hughes D.R., Pasini A.: Extended generalized quadrangles. Geom. Dedicata 35, 193–228 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen A.M., Shult E.E.: Affine polar spaces. Geom. Dedicata 35, 43–76 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Bruyn B.: On the uniqueness of near polygons with three points on every line. Eur. J. Combin. 23, 523–528 (2002)

    Article  MATH  Google Scholar 

  11. De Bruyn B.: Near Polygons. Birkhäuser, Basel (2006).

  12. De Bruyn B.: Isometric full embeddings of DW(2n − 1, q) into DH(2n − 1, q 2). Finite Fields Appl. 14, 188–200 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. De Bruyn B.: Two new classes of hyperplanes of the dual polar space DH(2n − 1, 4) not arising from the Grassmann-embedding. Linear Algebra Appl. 429, 2030–2045 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Del Fra A., Ghinelli D., Payne S.E.: (0,n)-sets in a generalized quadrangle. Combinatorics ’ 90 (Gaeta, 1990). Ann. Discret. Math. 52, 139–157 (1992)

    MathSciNet  Google Scholar 

  15. Hirschfeld J.W.P.: Finite projective spaces of three dimensions. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1985).

  16. Hirschfeld J.W.P.: Projective geometries over finite fields. Second edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, (1998).

  17. Huang W.-L.: Adjacency preserving mappings between point-line geometries. Innov. Incid. Geom. 3, 25–32 (2006)

    MATH  Google Scholar 

  18. Makhnev A.A.: Extensions of GQ(4,2), the description of hyperovals. Discret. Math. Appl. 7, 419–435 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Makhnev A.A.: Locally GQ(3,5)-graphs and geometries with short lines. Discret. Math. Appl. 8, 275–290 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pasechnik D.: Geometric characterization of the sporadic groups Fi22, Fi23, and Fi24. J. Combin. Theory Ser. A 68, 100–114 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pasechnik D.: Extending polar spaces of rank at least 3. J. Combin. Theory Ser. A 72, 232–242 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pasechnik D.: The triangular extensions of a generalized quadrangle of order (3,3). Bull. Belg. Math. Soc. Simon Stevin. 2, 509–518 (1995)

    MATH  MathSciNet  Google Scholar 

  23. Pasechnik D.: The extensions of the generalized quadrangle of order (3,9). Eur. J. Combin. 17, 751–755 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pasini A., Shpectorov S.: Uniform hyperplanes of finite dual polar spaces of rank 3. J. Combin. Theory Ser. A 94, 276–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics 110. Pitman, Boston (1984).

  26. Shult E.E.: On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin. 4, 299–316 (1997)

    MATH  MathSciNet  Google Scholar 

  27. Shult E.E., Yanushka A.: Near n-gons and line systems. Geom. Dedicata 9, 1–72 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tits J.: Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics 386. Springer, Berlin (1974)

    Google Scholar 

  29. Zara F.: Graphes liés aux espaces polaires. Eur. J. Combin. 5, 255–290 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Bruyn.

Additional information

Communicated by Leo Storme.

Dedicated to the memory of András Gács (1969–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bruyn, B. On hyperovals of polar spaces. Des. Codes Cryptogr. 56, 183–195 (2010). https://doi.org/10.1007/s10623-010-9400-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9400-1

Keywords

Mathematics Subject Classification (2000)

Navigation