Multiple blocking sets and multisets in Desarguesian planes | Designs, Codes and Cryptography
Skip to main content

Multiple blocking sets and multisets in Desarguesian planes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In AG(2, q 2), the minimum size of a minimal (q − 1)-fold blocking set is known to be q 3 − 1. Here, we construct minimal (q − 1)-fold blocking sets of size q 3 in AG(2, q 2). As a byproduct, we also obtain new two-character multisets in PG(2, q 2). The essential idea in this paper is to investigate q 3-sets satisfying the opposite of Ebert’s discriminant condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barwick S.G., Ebert G.L.: Unitals in Projective Planes. Springer Monographs in Mathematics. Springer, New York (2008)

    Google Scholar 

  2. Baker R.D., Ebert G.L.: On Buekenhout–Metz unitals of odd order. J. Combin. Theory Ser. A 60(1), 67–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blokhuis A.: On multiple nuclei and a conjecture of Lunelli and Sce. Bull. Belg. Math. Soc. 3, 349–353 (1994)

    Google Scholar 

  4. Bruen A.A.: Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76, 342–344 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruen A.A.: Polynomial multiplicities over finite fields and intersection sets. J. Combin. Theory (A) 60, 19–33 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brouwer A.E., Schrijver A.: The blocking number of an affine space. J. Combin. Theory Ser. A 24, 251–253 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruen A.A., Thas J.A.: Hyperplane coverings and blocking sets. Math. Z. 181, 407–409 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ebert G.L.: On Buekenhout–Metz unitals of even order. Eur. J. Combin. 13(2), 109–117 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).

  10. Jamison R.: Covering finite fields with cosets of subspaces. J. Combin. Theory Ser. A 22, 253–266 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Aguglia.

Additional information

Communicated by L. Storme.

Dedicated to the memory of András Gács (1969–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguglia, A., Korchmáros, G. Multiple blocking sets and multisets in Desarguesian planes. Des. Codes Cryptogr. 56, 177–181 (2010). https://doi.org/10.1007/s10623-010-9397-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9397-5

Keywords

Mathematics Subject Classification (2000)