Abstract
In AG(2, q 2), the minimum size of a minimal (q − 1)-fold blocking set is known to be q 3 − 1. Here, we construct minimal (q − 1)-fold blocking sets of size q 3 in AG(2, q 2). As a byproduct, we also obtain new two-character multisets in PG(2, q 2). The essential idea in this paper is to investigate q 3-sets satisfying the opposite of Ebert’s discriminant condition.
Similar content being viewed by others
References
Barwick S.G., Ebert G.L.: Unitals in Projective Planes. Springer Monographs in Mathematics. Springer, New York (2008)
Baker R.D., Ebert G.L.: On Buekenhout–Metz unitals of odd order. J. Combin. Theory Ser. A 60(1), 67–84 (1992)
Blokhuis A.: On multiple nuclei and a conjecture of Lunelli and Sce. Bull. Belg. Math. Soc. 3, 349–353 (1994)
Bruen A.A.: Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76, 342–344 (1970)
Bruen A.A.: Polynomial multiplicities over finite fields and intersection sets. J. Combin. Theory (A) 60, 19–33 (1992)
Brouwer A.E., Schrijver A.: The blocking number of an affine space. J. Combin. Theory Ser. A 24, 251–253 (1978)
Bruen A.A., Thas J.A.: Hyperplane coverings and blocking sets. Math. Z. 181, 407–409 (1982)
Ebert G.L.: On Buekenhout–Metz unitals of even order. Eur. J. Combin. 13(2), 109–117 (1992)
Hirschfeld J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).
Jamison R.: Covering finite fields with cosets of subspaces. J. Combin. Theory Ser. A 22, 253–266 (1977)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Storme.
Dedicated to the memory of András Gács (1969–2009).
Rights and permissions
About this article
Cite this article
Aguglia, A., Korchmáros, G. Multiple blocking sets and multisets in Desarguesian planes. Des. Codes Cryptogr. 56, 177–181 (2010). https://doi.org/10.1007/s10623-010-9397-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9397-5