Some two-character sets | Designs, Codes and Cryptography Skip to main content
Log in

Some two-character sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Some new examples of two-character sets with respect to planes of PG(3, q 2), q odd, are constructed. They arise from three-dimensional hyperbolic quadrics, from the geometry of an orthogonal polarity commuting with a unitary polarity. The last examples arise from the geometry of the unitary group PSU(3, 3) acting on the split Cayley hexagon H(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cooperstein B.N.: Maximal subgroups of G 2(2n). J. Algebra 70, 23–36 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cossidente A., King O.H.: Maximal orthogonal subgroups of finite unitary groups. J. Group Theory 7, 447–462 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cossidente A., Marino G.: Veronese embedding and two-character sets. Des. Codes Cryptogr. 42, 103–107 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cossidente A., Penttila T.: Hemisystems on the Hermitian surface. J. Lond. Math. Soc. 72, 731–741 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cossidente A., Van Maldeghem H.: The exceptional simple group G 2(q), q even and two-character sets. J. Comb. Theory. Ser A 114, 964–969 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cossidente A., Durante N., Marino G., Penttila T., Siciliano A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46(2), 231–241 (2008)

    Article  MathSciNet  Google Scholar 

  8. Delsarte Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. De Wispelaere A., Van Maldeghem H.: Codes from generalized hexagons. Des. Codes Cryptogr. 37, 435–448 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Wispelaere A., Van Maldeghem H.: Some new two-character sets in PG(5, q 2) and a distance–2 ovoid in the generalized hexagon H(4). Discrete Math. 308(14), 2976–2983 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dickson L.E.: A new system of simple groups. Mathematische Annalen 60, 137–150 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dye R.H.: A quick geometrical proof that G 2(K) is maximal in PΩ7(K). Geom. Dedicata 26, 361–364 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Segre B.: Forme e geometrie Hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Taylor D.E.: The geometry of the classical groups. Heldermann Verlag, Berlin (1992)

    MATH  Google Scholar 

  15. The Computational Algebra Group in the School of Mathematics and Statistics at the University of Sydney. The MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/magma/.

  16. Tits J.: Sur certain classes d’espaces homogénes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8 (XXIX) (1955).

  17. Van Maldeghem H.: Generalized polygons. In: Monographs in Mathematics, vol. 93. Birkhuser Verlag, Basel (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver H. King.

Additional information

Communicated by Leo Storme.

Dedicated to the memory of András Gács (1969–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A., King, O.H. Some two-character sets. Des. Codes Cryptogr. 56, 105–113 (2010). https://doi.org/10.1007/s10623-010-9394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9394-8

Keywords

Mathematics Subject Classification (2000)

Navigation