On quadratic APN functions and dimensional dual hyperovals | Designs, Codes and Cryptography Skip to main content
Log in

On quadratic APN functions and dimensional dual hyperovals

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we characterize the d-dimensional dual hyperovals in PG(2d + 1, 2) that can be obtained by Yoshiara’s construction (Innov Incid Geom 8:147–169, 2008) from quadratic APN functions and state a one-to-one correspondence between the extended affine equivalence classes of quadratic APN functions and the isomorphism classes of these dual hyperovals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bierbrauer J.: A family of crooked functions. Des. Codes Cryptogr. 50, 235–241 (2009)

    Article  MathSciNet  Google Scholar 

  2. Brinkmann M., Leander G.: On the classification of APN functions up to dimension five. Des. Codes Cryptogr. 49, 273–288 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Browning K., Dillon J., Kibler R., McQuistan M.: APN polynomials and related codes. Submitted (2008).

  4. Budaghyan L., Carlet C., Leander G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory 54, 4218–4229 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Budaghyan L., Carlet C., Leander G.: Constructing new APN functions from known ones. Finite Fields Appl. 15, 150–159 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carlet C.: Vectorial Boolean functions for cryptography. In: Crama Y., Hammer P. (eds.) Boolean Methods and Models. Cambridge University Press (to appear).

  7. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chabaud F., Vaudenay S.: Links between differential and linear cryptanalysis. In: Santis, A.D. (eds) Advances in Cryptology – EUROCRYPT 94, vol. 950 of Lecture Notes in Computer Science, pp. 356–365. Springer, New York (1995)

    Google Scholar 

  9. Cooperstein B.N., Thas J.A.: On generalized k-arcs in PG(2n, q). Ann. Comb. 5, 141–152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Del Fra A.: On d-dimensional dual hyperovals. Geom. Dedicata 79, 157–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Edel Y., Pott A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3, 59–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52, 744–747 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation function. IEEE Trans. Inform. Theory 14, 154–156 (1968)

    Article  MATH  Google Scholar 

  14. Göloglu F., Pott A.: Almost perfect nonlinear functions: a possible geometric approach. In: Proceedings of the Contact Forum Coding Theory and Cryptography II, pp. 75–100. Royal Flemish Academy of Belgium for Science and the Arts, Belgium (2008).

  15. Huybrechts C., Pasini A.: Flag-transitive extensions of dual affine spaces. Bull. Belg. Math. Soc. Simon Stevin 5, 341–353 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Nakagawa N., Yoshiara S.: A construction of differentially 4-uniform functions from commutative semifields of characteristic 2. Lect. Notes Comput. Sci. 4547, 134–146 (2007)

    Article  MathSciNet  Google Scholar 

  17. Nyberg K.: Differentially uniform mappings for cryptography. In: Advances in Cryptography. EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pp. 55–64. Springer-Verlag, New York (1994).

  18. Taniguchi H.: A family of dual hyperovals over GF(q) with q even. Eur. J. Combin. 26, 95–99 (2005)

    Article  Google Scholar 

  19. Yoshiara S.: Dimensional dual arcs a survey. In: Hulpke, A., Liebler, B., Penttila, T., Seress, A. (eds) Finite Geometires, Groups, and Computation, pp. 247–266. Walter de Gruyter, Berlin (2006)

    Google Scholar 

  20. Yoshiara S.: Notes on Taniguchi’s dimensional dual hyperovals. Eur. J. Combin. 28, 674–684 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yoshiara S.: Dimensional dual hyperovals associated with quadratic APN functions. Innov. Incid. Geom. 8, 147–169 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Edel.

Additional information

Communicated by Victor A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edel, Y. On quadratic APN functions and dimensional dual hyperovals. Des. Codes Cryptogr. 57, 35–44 (2010). https://doi.org/10.1007/s10623-009-9347-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9347-2

Keywords

Mathematics Subject Classification (2000)

Navigation