Abstract
The NTRU cryptosystem is constructed on the base ring \({\mathbb{Z}}\) . We give suitability conditions on rings to serve as alternate base rings. We present an example of an NTRU-like cryptosystem based on the Eisenstein integers \({\mathbb{Z}[\zeta_3]}\) , which has a denser lattice structure than \({\mathbb{Z}}\) for the same dimension, and which furthermore presents a more difficult lattice problem for lattice attacks, for the same level of decryption failure security.
Similar content being viewed by others
References
Buchmann J.: Reducing lattice bases by means of approximations. Algorithmic number theory, Ithaca, NY, 1994. Lecture Notes in Computer Science, vol. 877, pp. 160–168. Springer, Berlin (1994).
Coglianese M., Goi B.-M.: MaTRU: a new NTRU-based cryptosystem. Indocrypt 2005. Lecture Notes in Computer Science, vol. 3797, pp 232–243. (2005).
Conway J.H., Sloane N.J.A.: Sphere packings, lattices and groups. In: Grundlehren der Mathematischen Wissenschaften, 3rd edn., vol. 290. Springer-Verlag, New York (1999).
Coppersmith D., Shamir A.: Lattice attacks on NTRU. Advances in cryptology—EUROCRYPT 1997. Lecture Notes in Computer Science, vol. 1233, pp. 52–61. Springer, Berlin (1997).
Gaborit P., Ohler J., Sole P.: CTRU, A polynomial analogue of NTRU. NTRU Technical Report #Inria RR-4621 (2006).
Hirschhorn P., Hoffstein J., Howgrave-Graham N., Whyte W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Proceedings of the 7th international conference on applied cryptography and network security, Paris-Rocquencourt, France. Lecture Notes In Computer Science, vol. 5536, pp. 437–455. (2009).
Hoffstein J., Pipher J., Silverman J.H.: NTRU, a ring-based public-key cryptosystem. Algorithmic number theory, Portland, OR, 1998. Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer, Berlin (1996).
Hoffstein J., Pipher J., Silverman J.: An introduction to mathematical cryptography. In: Undergraduate Texts in Mathematics. Springer, New York (2008).
Howgrave-Graham N.: Computational mathematics inspired by RSA. PhD thesis, University of Bath (1998).
Howgrave-Graham N., Silverman J.H., Whyte W.: Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. Topics in cryptology—CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376, pp. 118–135. Springer, Berlin (2005).
Kouzmenko R.: Generalizations of the NTRU cryptosystem. Diploma Project, École Polytechnique Fédérale de Lausanne, (2005–2006).
Lemmermeyer F.: The Euclidean algorithm in algebraic number fields. Exposition. Math. 13, 385–416 (1995)
Masley J.M., Montgomery H.L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 248–256 (1976).
Rhai T.-S.: A characterization of polynomial domains over a field. Am. Math. Mon. 69, 984–986 (1962)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Galbraith.
Rights and permissions
About this article
Cite this article
Nevins, M., KarimianPour, C. & Miri, A. NTRU over rings beyond \({\mathbb{Z}}\) . Des. Codes Cryptogr. 56, 65–78 (2010). https://doi.org/10.1007/s10623-009-9342-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9342-7