NTRU over rings beyond $${\mathbb{Z}}$$ | Designs, Codes and Cryptography Skip to main content
Log in

NTRU over rings beyond \({\mathbb{Z}}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The NTRU cryptosystem is constructed on the base ring \({\mathbb{Z}}\) . We give suitability conditions on rings to serve as alternate base rings. We present an example of an NTRU-like cryptosystem based on the Eisenstein integers \({\mathbb{Z}[\zeta_3]}\) , which has a denser lattice structure than \({\mathbb{Z}}\) for the same dimension, and which furthermore presents a more difficult lattice problem for lattice attacks, for the same level of decryption failure security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchmann J.: Reducing lattice bases by means of approximations. Algorithmic number theory, Ithaca, NY, 1994. Lecture Notes in Computer Science, vol. 877, pp. 160–168. Springer, Berlin (1994).

  2. Coglianese M., Goi B.-M.: MaTRU: a new NTRU-based cryptosystem. Indocrypt 2005. Lecture Notes in Computer Science, vol. 3797, pp 232–243. (2005).

  3. Conway J.H., Sloane N.J.A.: Sphere packings, lattices and groups. In: Grundlehren der Mathematischen Wissenschaften, 3rd edn., vol. 290. Springer-Verlag, New York (1999).

  4. Coppersmith D., Shamir A.: Lattice attacks on NTRU. Advances in cryptology—EUROCRYPT 1997. Lecture Notes in Computer Science, vol. 1233, pp. 52–61. Springer, Berlin (1997).

  5. Gaborit P., Ohler J., Sole P.: CTRU, A polynomial analogue of NTRU. NTRU Technical Report #Inria RR-4621 (2006).

  6. Hirschhorn P., Hoffstein J., Howgrave-Graham N., Whyte W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Proceedings of the 7th international conference on applied cryptography and network security, Paris-Rocquencourt, France. Lecture Notes In Computer Science, vol. 5536, pp. 437–455. (2009).

  7. Hoffstein J., Pipher J., Silverman J.H.: NTRU, a ring-based public-key cryptosystem. Algorithmic number theory, Portland, OR, 1998. Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer, Berlin (1996).

  8. Hoffstein J., Pipher J., Silverman J.: An introduction to mathematical cryptography. In: Undergraduate Texts in Mathematics. Springer, New York (2008).

  9. Howgrave-Graham N.: Computational mathematics inspired by RSA. PhD thesis, University of Bath (1998).

  10. Howgrave-Graham N., Silverman J.H., Whyte W.: Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. Topics in cryptology—CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376, pp. 118–135. Springer, Berlin (2005).

  11. Kouzmenko R.: Generalizations of the NTRU cryptosystem. Diploma Project, École Polytechnique Fédérale de Lausanne, (2005–2006).

  12. Lemmermeyer F.: The Euclidean algorithm in algebraic number fields. Exposition. Math. 13, 385–416 (1995)

    MATH  MathSciNet  Google Scholar 

  13. Masley J.M., Montgomery H.L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 248–256 (1976).

  14. Rhai T.-S.: A characterization of polynomial domains over a field. Am. Math. Mon. 69, 984–986 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Nevins.

Additional information

Communicated by S. Galbraith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevins, M., KarimianPour, C. & Miri, A. NTRU over rings beyond \({\mathbb{Z}}\) . Des. Codes Cryptogr. 56, 65–78 (2010). https://doi.org/10.1007/s10623-009-9342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9342-7

Keywords

Mathematics Subject Classification (2000)

Navigation