Combinatorial generalizations of generalized quadrangles of order (2, 2) | Designs, Codes and Cryptography Skip to main content
Log in

Combinatorial generalizations of generalized quadrangles of order (2, 2)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study substructures of a projective space PG(n, 2) represented in terms of elementary combinatorics of finite sets, which generalize the Sylvester’s representation of the generalized quadrangle of order (2, 2). Their synthetic properties are established and automorphisms are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow W.-L.: On the geometry of algebraic homogeneous spaces. Ann. Math. 50, 32–67 (1949)

    Article  Google Scholar 

  2. Coxeter H.S.M.: Desargues configurations and their collineation groups. Math. Proc. Camb. Phil. Soc. 78, 227–246 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hall J.I.: Classifying copolar spaces and graphs. Quart. J. Math. Oxford 33(2), 421–449 (1982)

    Article  MATH  Google Scholar 

  4. Hilbert D., Cohn-Vossen P.: Anschauliche Geometrie. Springer, Berlin (1932) (English translation: Geometry and the Imagination, AMS Chelsea Publishing)

    MATH  Google Scholar 

  5. Klin M.Ch., Pöschel R., Rosenbaum K.: Angewandte Algebra für Mathematiker und Informatiker. VEB Deutcher Verlag der Wissenschaften, Berlin (1988).

  6. Łapiński M., Prażmowski K.: On set-theoretic and cyclic representation of the structure of barycentres. Demonstratio Mathematica 37, 619–638 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics, vol. 110. Pitman, Boston (1984)

    Google Scholar 

  8. Polster B.: A Geometrical Picture Book. Springer, New York (1998)

    MATH  Google Scholar 

  9. Prażmowska M.: Multiplied perspectives and generalizations of Desargues configuration. Demonstratio Mathematica 39(4), 887–906 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Prażmowska M., Prażmowski K.: The convolution of a partial Steiner triple system and a group. J. Geom. 85, 90–109 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Reye T.: Das Problem der Konfigurationen. Acta Math. 1, 93–96 (1882)

    Article  MathSciNet  Google Scholar 

  12. van Maldeghem H.: Slim and bislim geometries. In: Topics in Diagram Geometry. Quad. Mat., vol. 12, pp. 227–254. Department of Mathematics, Secondary University, Napoli, Caserta (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Prażmowska.

Additional information

Communicated by Guglielmo Lunardon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owsiejczuk, A., Prażmowska, M. Combinatorial generalizations of generalized quadrangles of order (2, 2). Des. Codes Cryptogr. 53, 45–57 (2009). https://doi.org/10.1007/s10623-009-9291-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9291-1

Keywords

Mathematics Subject Classification (2000)

Navigation