Abstract
We study substructures of a projective space PG(n, 2) represented in terms of elementary combinatorics of finite sets, which generalize the Sylvester’s representation of the generalized quadrangle of order (2, 2). Their synthetic properties are established and automorphisms are characterized.
Similar content being viewed by others
References
Chow W.-L.: On the geometry of algebraic homogeneous spaces. Ann. Math. 50, 32–67 (1949)
Coxeter H.S.M.: Desargues configurations and their collineation groups. Math. Proc. Camb. Phil. Soc. 78, 227–246 (1975)
Hall J.I.: Classifying copolar spaces and graphs. Quart. J. Math. Oxford 33(2), 421–449 (1982)
Hilbert D., Cohn-Vossen P.: Anschauliche Geometrie. Springer, Berlin (1932) (English translation: Geometry and the Imagination, AMS Chelsea Publishing)
Klin M.Ch., Pöschel R., Rosenbaum K.: Angewandte Algebra für Mathematiker und Informatiker. VEB Deutcher Verlag der Wissenschaften, Berlin (1988).
Łapiński M., Prażmowski K.: On set-theoretic and cyclic representation of the structure of barycentres. Demonstratio Mathematica 37, 619–638 (2004)
Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics, vol. 110. Pitman, Boston (1984)
Polster B.: A Geometrical Picture Book. Springer, New York (1998)
Prażmowska M.: Multiplied perspectives and generalizations of Desargues configuration. Demonstratio Mathematica 39(4), 887–906 (2006)
Prażmowska M., Prażmowski K.: The convolution of a partial Steiner triple system and a group. J. Geom. 85, 90–109 (2006)
Reye T.: Das Problem der Konfigurationen. Acta Math. 1, 93–96 (1882)
van Maldeghem H.: Slim and bislim geometries. In: Topics in Diagram Geometry. Quad. Mat., vol. 12, pp. 227–254. Department of Mathematics, Secondary University, Napoli, Caserta (2003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Guglielmo Lunardon.
Rights and permissions
About this article
Cite this article
Owsiejczuk, A., Prażmowska, M. Combinatorial generalizations of generalized quadrangles of order (2, 2). Des. Codes Cryptogr. 53, 45–57 (2009). https://doi.org/10.1007/s10623-009-9291-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9291-1
Keywords
- Fano projective space
- Combinatorial Grassmannian
- Veblen configuration
- Net (configuration)
- Generalized quadrangle