Abstract
In the geometric setting of commuting orthogonal and unitary polarities we construct an infinite family of complete (q + 1)2–spans of the Hermitian surface \({\mathcal {H}(3, q^2)}\) , q odd. A construction of an infinite family of minimal blocking sets of \({\mathcal {H}(3, q^2)}\) , q odd, admitting PSL 2(q), is also provided.
Similar content being viewed by others
References
Aguglia A., Cossidente A., Ebert G.L.: Complete spans on Hermitian varieties. Des. Codes Cryptogr. 29(1–3), 7–15 (2003)
Aguglia A., Cossidente A., Ebert G.L.: On pairs of permutable Hermitian surface. Discrete Math. 301, 28–33 (2005)
Bamberg J., Kelly S., Law M., Penttila T.: Tim, Tight sets and m-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114(7), 1293–1314 (2007)
Cossidente A., Ebert G.L.: Permutable polarities and a class of ovoids of the Hermitian surface. European J. Combin. 25, 1059–1066 (2004)
Ebert G.L., Hirschfeld J.W.P.: Complete systems of lines on a Hermitian surface over a finite field. Des. Codes Cryptogr. 17(1–3), 253–268 (1999)
Kleidman P.B., Liebeck M.: The Subgroup Structure of the Finite Classical Groups. LMS Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990)
Payne S.E., Thas J.A.: Finite Generalized Quadrangles, Research Notes in Mathematics, vol. 104. Pitman, Boston-London-Melbourne (1984).
Segre B.: Forme e geometrie Hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201 (1965)
Sved M.: Baer subspaces in the n-dimensional projective space. In: Combinatorial Mathematics, X (Adelaide, 1982), Lecture Notes in Mathematics, vol. 1036, pp. 375–391. Springer, Berlin (1983).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Ball.
Rights and permissions
About this article
Cite this article
Cossidente, A. Some constructions on the Hermitian surface. Des. Codes Cryptogr. 51, 123–129 (2009). https://doi.org/10.1007/s10623-008-9248-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-008-9248-9