Periodic multisequences with large error linear complexity | Designs, Codes and Cryptography Skip to main content
Log in

Periodic multisequences with large error linear complexity

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Generalizing the theory of k-error linear complexity for single sequences over a finite field, Meidl et al. (J. Complexity 23(2), 169–192 (2007)) introduced three possibilities of defining error linear complexity measures for multisequences. A good keystream sequence must possess a large linear complexity and a large k-error linear complexity simultaneously for suitable values of k. In this direction several results on the existence, and lower bounds on the number, of single sequences with large k-error linear complexity were proved in Meidl and Niederreiter (Appl. Algebra Eng. Commun. Comput. 14(4), 273–286 (2003)), Niederreiter (IEEE Trans. Inform. Theory 49(2), 501–505 (2003)) and Niederreiter and Shparlinski (In: Paterson (ed.) 9th IMA International Conference on Cryptography and Coding (2003)). In this paper we discuss analogous results for the case of multisequences. We also present improved bounds on the error linear complexity and on the number of sequences satisfying such bounds for the case of single sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp E.R. (1968). Algebraic Coding Theory. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Dai Z., Imamura K., Yang J.: Asymptotic behavior of normalized linear complexity of multi-sequences. In: Helleseth T., Sarwate D.V., Song H.Y., Yang K. (eds.) Sequences and Their Applications—SETA 2004, Lecture Notes in Computer Science, vol. 3486, pp. 129–142. Springer, Berlin (2005).

  3. Dawson E., Simpson L. (2002). Analysis and design issues for synchronous stream ciphers. In: Niederreiter H. (eds) Coding Theory and Cryptology. World Scientific, Singapore, pp. 49–90

    Google Scholar 

  4. Ding C. (1988). Proof of Massey’s conjectured algorithm. In: Günther C.G. (eds) Advances in Cryptology— EUROCRYPT ’88, Lecture Notes in Computer Science, vol. 330. Springer, Berlin, pp. 345–349

    Google Scholar 

  5. Ding C. (1990). Lower bounds on the weight complexities of cascaded binary sequences. In: Seberry J., Pieprzyk J. (eds) International Conference on Cryptology—AUSCRYPT ’90, Lecture Notes in Computer Science, vol. 453. Springer, Berlin, pp. 39–43

    Google Scholar 

  6. Ding C., Xiao G., Shan W. (1991). The Stability Theory of Stream Ciphers, Lecture Notes in Computer Science, vol. 561. Springer, Berlin

    Google Scholar 

  7. Fell H.J. (1991). Linear complexity of transformed sequences. In: Cohen G.D., Charpin P. (eds) EUROCODE ’90, Lecture Notes in Computer Science, vol. 514. Springer, Berlin, pp. 205–214

    Google Scholar 

  8. Feng X., Dai Z. (2005). Expected value of the linear complexity of two-dimensional binary sequences. In: Helleseth T., Sarwate D.V., Song H.Y., Yang K. (eds) Sequences and Their Applications—SETA 2004, Lecture Notes in Computer Science, vol. 3486. Springer, Berlin, pp. 113–128

    Google Scholar 

  9. Fu F.W., Niederreiter H., Su M. (2005). The expectation and variance of the joint linear complexity of random periodic multisequences. J. Complexity 21(6): 804–822

    Article  MATH  MathSciNet  Google Scholar 

  10. Hawkes P., Paddon M., Rose G.G., de Vries M.W.: NLS, ECRYPT candidate. http://www.ecrypt.eu.org/stream/ciphers/nls/nls.pdf. Accessed Oct. 2007.

  11. Hawkes P., Paddon M., Rose G.G., de Vries M.W.: SSS, ECRYPT candidate. http://www.ecrypt.eu.org/stream/ciphers/sss/sss.pdf. Accessed Oct. 2007.

  12. Hawkes P., Rose G.G. (2000). Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto T. (eds) Advances in Cryptology – ASIACRYPT 2000, Lecture Notes in Computer Science, vol. 1976. Springer, Berlin, pp. 303–316

    Google Scholar 

  13. Lidl R., Niederreiter H. (1997). Finite Fields, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  14. Meidl W., Niederreiter H. (2003). The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19(1): 61–72

    Article  MATH  MathSciNet  Google Scholar 

  15. Meidl W., Niederreiter H. (2003). Periodic sequences with maximal linear complexity and large k-error linear complexity. Appl. Algebra Eng. Commun. Comput. 14(4): 273–286

    Article  MATH  MathSciNet  Google Scholar 

  16. Meidl W., Niederreiter H., Venkateswarlu A. (2007). Error linear complexity measures for multisequences. J. Complexity 23(2): 169–192

    Article  MATH  MathSciNet  Google Scholar 

  17. Niederreiter H. (2003). Linear complexity and related complexity measures for sequences. In: Johansson T., Maitra S. (eds) Progress in Cryptology—INDOCRYPT 2003, Lecture Notes in Computer Science, vol. 2904. Springer, Berlin, pp. 1–17

    Google Scholar 

  18. Niederreiter H. (2003). Periodic sequences with large k-error linear complexity. IEEE Trans. Inform. Theory 49(2): 501–505

    Article  MATH  MathSciNet  Google Scholar 

  19. Niederreiter H. (2006). The probabilistic theory of the joint linear complexity of multisequences. In: Gong G., Helleseth T., Song H.Y., Yang K. (eds) Sequences and Their Applications – SETA 2006, Lecture Notes in Computer Science, vol. 4086. Springer, Berlin, pp. 5–16

    Chapter  Google Scholar 

  20. Niederreiter H., Shparlinski I. (2003). Periodic sequences with maximal linear complexity and almost maximal k-error linear complexity. In: Paterson K.G. (eds) 9th IMA International Conference on Cryptography and Coding, Lecture Notes in Computer Science, vol. 2898. Springer, Berlin, pp. 183–189

    Google Scholar 

  21. Niederreiter H., Wang L.P. (2005). Proof of a conjecture on the joint linear complexity profile of multisequences. In: Maitra S., Madhavan C.E.V., Venkatesan R. (eds) Progress in Cryptology – INDOCRYPT 2005, Lecture Notes in Computer Science, vol. 3797. Springer, Berlin, pp. 13–22

    Chapter  Google Scholar 

  22. Niederreiter H., Wang L.P. (2007). The asymptotic behavior of the joint linear complexity profile of multisequences. Monatshefte für Mathematik 150(2): 141–155

    Article  MATH  MathSciNet  Google Scholar 

  23. Sakata S. (1990). Extension of the Berlekamp–Massey algorithm to N dimensions. Inform. Comput. 84(2): 207–239

    Article  MATH  MathSciNet  Google Scholar 

  24. Stamp M., Martin C. (1993). An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans. Inform. Theory 39(4): 1398–1401

    Article  MATH  MathSciNet  Google Scholar 

  25. van Lint J.H. (1982). Introduction to Coding Theory. Springer, Berlin

    MATH  Google Scholar 

  26. Wang L.P., Niederreiter H. (2006). Enumeration results on the joint linear complexity of multisequences. Finite Fields Their Appl. 12(4): 613–637

    Article  MathSciNet  Google Scholar 

  27. Wang L.P., Zhu Y.F., Pei D.Y. (2004). On the lattice basis reduction multisequence synthesis algorithm. IEEE Trans. Inform. Theory 50(11): 2905–2910

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayineedi Venkateswarlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederreiter, H., Venkateswarlu, A. Periodic multisequences with large error linear complexity. Des. Codes Cryptogr. 49, 33–45 (2008). https://doi.org/10.1007/s10623-008-9174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9174-x

Keywords

AMS Classifications

Navigation