Abstract
We study some geometry of the exceptional group G 2(q), q even, in terms of symplectic geometric configurations in the projective space PG(5,q). Using the spin representation of Sp 6(q), we obtain an alternative description of the Split Cayley hexagon H(q) related to G 2(q). We also give another geometric proof of the maximality of G 2(q), q even, in PSp 6(q).
Similar content being viewed by others
References
Aschbacher M (1984). On the maximal subgroups of the finite classical groups. Invent. Math. 76: 469–514
Brouwer AE, The composition factors of the Weyl modules with fundamental weights for the symplectic group (unpublished).
Cooperstein BN (1981). Maximal subgroups of G 2(2n). J Algebra 70: 23–36
Cossidente A and King OH (2007). On twisted tensor product group embeddings and the spin representation of symplectic groups. Adv Geom 7: 55–64
Dickson LE (1901). Linear groups with an exposition of the Galois field theory. Teubner, Leipzig
Dye RH (1977). Partitions and their stabilizers for line complexes and quadrics. Ann Mat Pura Appl 114: 173–194
Dye RH (1978). On the Arf invariant. J Algebra 53: 36–39
Dye RH (1979). Interrelations of symplectic and orthogonal groups in characteristic two. J Algebra 59: 202–221
Dye RH (1986). Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. J London Math Soc 33(2): 279–293
Dye RH (1988). A quick geometrical proof that G 2(K) is maximal in PΩ7(K). Geom Dedicata 26: 361–364
Gow R (1997). Contraction of exterior powers in characteristic 2 and the spin module. Geom Dedicata 64: 283–295
Hirschfeld JWP (1985). Finite projective spaces of three dimensions. Oxford University Press, Oxford
Hirschfeld JWP and Thas JA (1991). General Galois geometries. Oxford University Press, Oxford
Huppert B (1967). Endliche Gruppen I. Springer-Verlag, Berlin
Kantor WM (1979). Subgroups of classical groups generated by long root elements. Trans. Am. Math Soc 248: 347–379
King OH (1983). Imprimitive maximal subgroups of the orthogonal, special orthogonal, unitary and special unitary groups. Math Z 182: 193–203
King OH (1984). Imprimitive maximal subgroups of the symplectic, orthogonal and unitary groups. Geom Dedicata 15: 339–353
King OH (2005) The subgroup structure of finite classical groups in terms of geometric configurations. Surveys in combinatorics, 2005. LMS Lecture Note Series 327. Cambridge University Press, Cambridge
Kleidman PB (1987) The maximal subgroups of the low-dimensional classical groups, Ph.D. Thesis. Cambridge
Kleidman PB, Liebeck M (1990) The Subgroup structure of the finite classical groups. LMS Lecture Note Series 129. Cambridge University Press, Cambridge
Liebeck MW (1987). The affine permutation groups of rank three. Proc London Math Soc 54: 477–516
Liebeck MW, Praeger CE, Saxl J (1990) The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Amer. Math. Soc. vol. 432, Providence, Rhode Island
Taylor DE (1992). The geometry of the classical groups. Heldermann Verlag, Berlin
Tits J (1959) Sur la trialité et certains groupes qui s’en déduisent. Publ. Mat. de l’Inst des hautes et́udes scientifiques, No. 2, pp 37–60
Van Maldeghem H (1998) Generalized polygons. Monographs in Mathematics, vol 93. Birkhäuser Verlag, Basel
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cossidente, A., King, O.H. On the geometry of the exceptional group G 2(q), q even. Des. Codes Cryptogr. 47, 145–157 (2008). https://doi.org/10.1007/s10623-007-9107-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-007-9107-0