Abstract
This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.
Similar content being viewed by others
Notes
The Square Kilometer Array (http://www.skatelescope.org) will generate about 200 GB of raw data per second and the LOFAR (http://www.lofar.org/) low band antennas generate 1.6 TB raw data per second.
The Euclid Imaging Consortium (http://www.ias.u-psud.fr/imEuclid) will generate 1 PB data per year and the Large Synoptic Survey Telescope (http://www.lsst.org) will generate several petabytes of new image and catalogue data every year.
Sloan Digital Sky Survey: http://www.sdss.org/.
ADMIRE project: http://www.admire-project.eu/.
ADMIRE prototype: http://sourceforge.net/projects/admire/.
ADMIRE publications: http://www.admire-project.eu/admire-library/index.html.
Eclipse: http://www.eclipse.org/.
These are functions that when supplied with parameters such as PEs, generate graphs with those PEs in them. The graph is then treated just like any other.
Virtual Earthquake and seismology Research Community e-science environment in Europe: http://www.verce.eu/.
References
Atkinson, M.P., Baxter, R., Besana, P., Galea, M., Parsons, M., Brezany, P., Corcho, O., van Hemert, J., Snelling, D.: The DATA Bonanza—Improving Knowledge Discovery for Science, Engineering and Business. Wiley, New York (2012). To be published
Atkinson, M.P., Galea, M., Liew, C.S., Martin, P.: Final report on the ADMIRE architecture, with an assessment and proposals for its development. Tech. rep., The ADMIRE Project (2011)
Barga, R., Jackson, J., Araujo, N., Guo, D., Gautam, N., Simmhan, Y.: The Trident scientific workflow workbench. In: Proceedings of the 2008 Fourth IEEE International Conference on eScience, e-Science ’08, pp. 317–318. IEEE Comput. Soc., Los Alamitos (2008)
Barseghian, D., Altintas, I., Jones, M.B., Crawl, D., Potter, N., Gallagher, J., Cornillon, P., Schildhauer, M., Borer, E.T., Seabloom, E.W., Hosseini, P.R.: Workflows and extensions to the Kepler scientific workflow system to support environmental sensor data access and analysis. Ecol. Inform. 5(1), 42–50 (2010)
Bell, G., Hey, T., Szalay, A.S.: Beyond the data deluge. Science 323(5919), 1297–1298 (2009)
Berriman, G.B., Groom, S.L.: How will astronomy archives survive the data tsunami? Commun. ACM 54(12), 52–56 (2011)
Buil-Aranda, C., Arenas, M., Corcho, O.: Semantics and optimization of the SPARQL 1.1 federation extension. In: Proceedings of the 8th Extended Semantic Web Conference on the Semanic Web: Research and Applications—Volume Part II, ESWC’11, pp. 1–15. Springer, Berlin (2011)
Curcin, V., Ghanem, M.: Scientific workflow systems—can one size fit all? In: Cairo International Biomedical Engineering Conference, CIBEC ’08, pp. 1–9 (2008)
De Roure, D., Goble, C., Stevens, R.: The design and realisation of the myExperiment virtual research environment for social sharing of workflows. Future Gener. Comput. Syst. 25, 561–567 (2009)
Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: an overview of workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540 (2009)
Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)
Dobrzelecki, B., Krause, A., Hume, A., Grant, A., Antonioletti, M., Alemu, T., Atkinson, M.P., Jackson, M., Theocharopoulos, E.: Integrating distributed data sources with OGSA-DAI DQP and views. Philos. Trans. R. Soc. Lond. A 368(1926), 4133–4145 (2010)
ebXML Business Process Technical Committee: ebXML business process specification schema technical specification (version 2.0.4). Tech. rep., OASIS (2006)
Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: SPADE: the system S declarative stream processing engine. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1123–1134. ACM, New York (2008)
Gorton, I., Greenfield, P., Szalay, A., Williams, R.: Data-intensive computing in the 21st century. Computer 41(4), 30–32 (2008)
Gray, J.: Jim Gray on eScience: a transformed scientific method. In: Hey, T., Tansley, S., Tolle, K. (eds.) The Fourth Paradigm: Data-Intensive Scientific Discovery, pp. xix–xxxiii. Microsoft Research, Washington (2009)
Gray, J., Liu, D.T., Nieto-Santisteban, M., Szalay, A., DeWitt, D.J., Heber, G.: Scientific data management in the coming decade. SIGMOD Rec. 34, 34–41 (2005)
Habala, O., Jarka, M., Laclavik, M., Simo, B., Tran, V.: Report on pilot applications deployment and platform evaluation. Tech. rep., The ADMIRE Project (2011)
Han, L., Liew, C.S., van Hemert, J.I., Atkinson, M.P.: A generic parallel processing model for facilitating data mining and integration. Parallel Comput. 37(3), 157–171 (2011)
Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Washington (2009)
Hull, D., Wolstencroft, K., Stevens, R., Goble, C.A., Pocock, M.R., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34(web–server-issue), 729–732 (2006)
Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, EuroSys ’07, pp. 59–72. ACM, New York (2007)
Jordon, D., Evdemon, J.: Web services business process execution language, version 2.0, OASIS standard. Tech. rep., OASIS (2007)
Language and Architecture Team, ADMIRE project: DISPEL: data-intensive systems process engineering language users’ manual (version 1.0). Tech. rep., School of Informatics, University of Edinburgh (2011)
Lee, E.A., Neuendorffer, S.: MoML—a Modeling Markup Language in XML–version 0.4. Tech. rep., University of California at Berkeley (2000)
Liew, C.S., Atkinson, M.P., Ostrowski, R., Cole, M., van Hemert, J.I., Han, L.: Performance database: capturing data for optimizing distributed streaming workflows. Philos. Trans. R. Soc. Lond. A 369(1949), 3268–3284 (2011)
Llorá, X., Ács, B., Auvil, L.S., Capitanu, B., Welge, M.E., Goldberg, D.E.: Meandre: semantic-driven data-intensive flows in the clouds. In: IEEE Fourth International Conference on eScience, pp. 238–245. IEEE Press, New York (2008)
Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurr. Comput. 18(10), 1039–1065 (2006)
Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2), 117–236 (2005)
Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)
Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 1099–1110. ACM, New York (2008)
Pallickara, S., Ekanayake, J., Fox, G.: Granules: a lightweight, streaming runtime for cloud computing with support for map-reduce. In: Proceedings of the IEEE International Conference on Cluster Computing and Workshops, CLUSTER ’09, pp. 1–10 (2009)
Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with Sawzall. Sci. Program. 13(4), 227–298 (2005)
Stonebraker, M., Becla, J., Dewitt, D., Lim, K.T., Maier, D., Ratzesberger, O., Zdonik, S.: Requirements for science data bases and SciDB. In: Conference on Innovative Data Systems Research (CIDR) (2009)
Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana workflow environment: architecture and applications. In: Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) Workflows for e-Science, pp. 320–339. Springer, London (2007)
Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: a language for streaming applications. In: Horspool, R. (ed.) Compiler Construction. Lecture Notes in Computer Science, vol. 2304, pp. 49–84. Springer, Berlin (2002)
Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: a language for distributed parallel scripting. Parallel Comput. 37(9), 633–652 (2011)
Yaikhom, G., Atkinson, M.P., van Hemert, J.I., Corcho, O., Krause, A.: Validation and mismatch repair of workflows through typed data streams. Philos. Trans. R. Soc. Lond. A 369(1949), 3285–3299 (2011)
Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. J. Grid Comput. 3, 171–200 (2005)
Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu, I., Stef-Praun, T., Wilde, M.: Swift: fast, reliable, loosely coupled parallel computation. In: Proceedings of the 2007 IEEE Congress on Services, SERVICES ’07, pp. 199–206. IEEE Comput. Soc., Los Alamitos (2007)
Acknowledgements
The work presented in this paper is supported by the ADMIRE project (funded by EU FP7-ICT- 215024) and the e-Science Core Programme Senior Research Fellow programme (funded by the UK EPSRC EP/D079829/1).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Judy Qiu and Dennis Gannon.
Rights and permissions
About this article
Cite this article
Atkinson, M., Liew, C.S., Galea, M. et al. Data-intensive architecture for scientific knowledge discovery. Distrib Parallel Databases 30, 307–324 (2012). https://doi.org/10.1007/s10619-012-7105-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10619-012-7105-3