Abstract
A wireless sensor network (WSN) can be construed as an intelligent, large-scale device for observing and measuring properties of the physical world. In recent years, the database research community has championed the view that if we construe a WSN as a database (i.e., if a significant aspect of its intelligent behavior is that it can execute declaratively-expressed queries), then one can achieve a significant reduction in the cost of engineering the software that implements a data collection program for the WSN while still achieving, through query optimization, very favorable cost:benefit ratios. This paper describes a query processing framework for WSNs that meets many desiderata associated with the view of WSN as databases. The framework is presented in the form of compiler/optimizer, called SNEE, for a continuous declarative query language over sensed data streams, called SNEEql. SNEEql can be shown to meet the expressiveness requirements of a large class of applications. SNEE can be shown to generate effective and efficient query evaluation plans. More specifically, the paper describes the following contributions: (1) a user-level syntax and physical algebra for SNEEql, an expressive continuous query language over WSNs; (2) example concrete algorithms for physical algebraic operators defined in such a way that the task of deriving memory, time and energy analytical cost-estimation models (CEMs) for them becomes straightforward by reduction to a structural traversal of the pseudocode; (3) CEMs for the concrete algorithms alluded to; (4) an architecture for the optimization of SNEEql queries, called SNEE, building on well-established distributed query processing components where possible, but making enhancements or refinements where necessary to accommodate the WSN context; (5) algorithms that instantiate the components in the SNEE architecture, thereby supporting integrated query planning that includes routing, placement and timing; and (6) an empirical performance evaluation of the resulting framework.
Similar content being viewed by others
References
Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: a new model and architecture for data stream management. VLDB J. 12(2), 120–139 (2003)
Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: the Stanford stream data manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)
Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.: STREAM: the Stanford stream data manager. In: SIGMOD Conference, p. 665 (2003)
Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006)
Beckwith, R., Teibel, D., Bowen, P.: Report from the field: results from an agricultural wireless sensor network. In: LCN, pp. 471–478 (2004)
Bonfils, B.J., Bonnet, P.: Adaptive and decentralized operator placement for in-network query processing. In: IPSN, pp. 47–62 (2003)
Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Mobile Data Management, pp. 3–14 (2001)
Brayner, A., Lopes, A., Meira, D., Vasconcelos, R., Menezes, R.: An adaptive in-network aggregation operator for query processing in wireless sensor networks. J. Syst. Softw. 81(3), 328–342 (2008)
Brenninkmeijer, C.Y.: Querying sensor networks: requirements, semantics, algorithms and cost models. PhD thesis, School of Computer Science, University of Manchester (2010)
Brenninkmeijer, C.Y.A., Galpin, I., Fernandes, A.A.A., Paton, N.W.: A semantics for a query language over sensors, streams and relations. In: BNCOD, pp. 87–99. Springer, Berlin (2008)
Brenninkmeijer, C.Y.A., Galpin, I., Fernandes, A.A.A., Paton, N.W.: Validated cost models for sensor network queries. In: DMSN. ACM International Conference Proceeding Series (2009)
Burrell, J., Brooke, T., Beckwith, R.: Vineyard computing: sensor networks in agricultural production. IEEE Pervasive Comput., January–March, pp. 38–45 (2004)
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow processing for an uncertain world. In: CIDR (2003)
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow processing. In: SIGMOD Conference, p. 668 (2003)
Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS, pp. 34–43 (1998)
Chen, J., DeWitt, D.J., Naughton, J.F.: Design and evaluation of alternative selection placement strategies in optimizing continuous queries. In: ICDE, pp. 345–356 (2002)
Chu, D., Deshpande, A., Hellerstein, J.M., Hong, W.: Approximate data collection in sensor networks using probabilistic models. In: ICDE, p. 48 (2006)
Chu, D., Tavakoli, A., Popa, L., Hellerstein, J.M.: Entirely declarative sensor network systems. In: VLDB, pp. 1203–1206 (2006)
Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-based approximate querying in sensor networks. VLDB J. 14(4), 417–443 (2005)
Fernandes, A.A.A., Galpin, I., Gray, A.J.G., Paton, N.W.: An approach to network resilience for SNEE query evaluation in SemSorGrid4Env. Technical report, School of Computer Science, University of Manchester (2009)
Galpin, I., Brenninkmeijer, C.Y.A., Jabeen, F., Fernandes, A.A.A., Paton, N.W.: An architecture for query optimization in sensor networks. In: ICDE, pp. 1439–1441 (2008)
Galpin, I., Brenninkmeijer, C.Y.A., Jabeen, F., Fernandes, A.A.A., Paton, N.W.: Comprehensive optimization of declarative sensor network queries. In: SSDBM, pp. 339–360 (2009)
Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: SenSys, pp. 138–149 (2003)
Ganesan, D., Mathur, G., Shenoy, P.J.: Rethinking data management for storage-centric sensor networks. In: CIDR, pp. 22–31 (2007)
Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems Implementation. Prentice Hall, New York (2000)
Garofalakis, M.N., Ioannidis, Y.E.: Parallel query scheduling and optimization with time- and space-shared resources. In: VLDB, pp. 296–305 (1997)
Gay, D., Levis, P., von Behren, J.R., Welsh, M., Brewer, E.A., Culler, D.E.: The nesC language: a holistic approach to networked embedded systems. In: PLDI, pp. 1–11 (2003)
Gehrke, J., Madden, S.: Query processing in sensor networks. In: IEEE Pervasive Computing, vol. 3. IEEE Comput. Soc., Los Alamitos (2004)
Golab, L., Tamer Özsu, M.: Issues in data stream management. SIGMOD Rec. 32(2), 5–14 (2003)
Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: A novel approach to resource scheduling for parallel query processing on computational grids. Distrib. Parallel Databases 19(2–3), 87–106 (2006)
Govindan, R., Hellerstein, J.M., Hong, W., Madden, S., Franklin, M., Shenker, S.: The sensor network as a database, 2002. Available at CiteSeerX
Graefe, G.: Encapsulation of parallelism in the volcano query processing system. In: SIGMOD Conference, pp. 102–111 (1990)
Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref, W.G., Catlin, A.C., Elmagarmid, A.K., Eltabakh, M.Y., Elfeky, M.G., Ghanem, T.M., Gwadera, R., Ilyas, I.F., Marzouk, M.S., Xiong, X.: Nile: a query processing engine for data streams. In: ICDE, p. 851 (2004)
Hart, J.K., Martinez, K.: Environmental sensor networks: a revolution in the earth system science? Earth-Sci. Rev. 78, 177–191 (2006)
Hill, J., Szewczyk, R.., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System architecture directions for networked sensors. In: ASPLOS, pp. 93–104 (2000)
Ilarri, S., Mena, E., Illarramendi, A.: Using cooperative mobile agents to monitor distributed and dynamic environments. Inf. Sci. 178(9), 2105–2127 (2008)
Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel, U., Cherniack, M., Tibbetts, R., Zdonik, S.B.: Towards a streaming SQL standard. Proc. Very Large Data Bases 1(2), 1379–1390 (2008)
Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, New York (2005)
Karl, H., Willig, A., Wolisz, A. (eds.): Wireless Sensor Networks, First European Workshop, EWSN 2004, Berlin, Germany, January 19–21, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2920. Springer, Berlin (2004)
Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4), 422–469 (2000)
Levis, P., Madden, S., Polastre, J., Woo, A., Szewczykand, R., Whitehouse, K., Gay, D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: an operating system for sensor networks. In: Ambient Intelligence, pp. 115–148. Springer, Berlin (2005)
Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a tiny aggregation service for ad-hoc sensor networks. In: OSDI (2002)
Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: SIGMOD Conference, pp. 491–502 (2003)
Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)
Mainwaring, A.M., Culler, D.E., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: WSNA, pp. 88–97 (2002)
Manjhi, A., Nath, S., Gibbons, P.B.: Tributaries and deltas: efficient and robust aggregation in sensor network streams. In: SIGMOD Conference, pp. 287–298 (2005)
Marshall, I.W., Price, M.C., Li, H., Boyd, N., Boult, S.: Multi-sensor cross correlation for alarm generation in a deployed sensor network. In: EuroSSC, pp. 286–299 (2007)
Müller, R., Alonso, G., Kossmann, D.: SwissQM: next generation data processing in sensor networks. In: CIDR, pp. 1–9 (2007)
Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000)
Tork Roth, M., Ozcan, F., Haas, L.M.: Cost models DO matter: providing cost information for diverse data sources in a federated system. In: VLDB, pp. 599–610 (1999)
Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta, N.: CAPE: continuous query engine with heterogeneous-grained adaptivity. In: VLDB, pp. 1353–1356 (2004)
Sharaf, M.A., Beaver, J., Labrinidis, A., Chrysanthis, P.K.: TiNA: a scheme for temporal coherency-aware in-network aggregation. In: MobiDE, pp. 69–76 (2003)
Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Distributed query processing on the grid. In: GRID, pp. 279–290 (2002)
Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Mariposa, A.Yu.: A wide-area distributed database system. VLDB J. 5(1), 48–63 (1996)
Szewczyk, R., Mainwaring, A.M., Polastre, J., Anderson, J., Culler, D.E.: An analysis of a large scale habitat monitoring application. In: SynSys, pp. 214–226 (2004)
Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A.M., Estrin, D.: Habitat monitoring with sensor networks. Commun. ACM 47(6), 34–40 (2004)
Titzer, B., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation with precise timing. In: IPSN, pp. 477–482 (2005)
Trigoni, N., Yao, Y., Demers, A.J., Gehrke, J., Rajaraman, R.: Multi-query optimization for sensor networks. In: DCOSS, pp. 307–321 (2005)
Trigoni, N., Yao, Y., Demers, A.J., Gehrke, J., Rajaraman, R.: Wave scheduling and routing in sensor networks. Trans. Sens. Netw. 3(1), 2 (2007)
Tulone, D., Madden, S.: PAQ: time series forecasting for approximate query answering in sensor networks. In: EWSN, pp. 21–37 (2006)
Viglas, S., Naughton, J.F.: Rate-based query optimization for streaming information sources. In: SIGMOD Conference, pp. 37–48 (2002)
Yao, Y., Gehrke, J.: Query processing in sensor networks. In: CIDR (2003)
Yu, H., Lim, E.-P., Zhang, J.: On in-network synopsis join processing for sensor networks. In: MDM, p. 32 (2006)
Zadorozhny, V.I., Chrysanthis, P.K., Krishnamurthy, P.: A framework for extending the synergy between query optimization and mac layer in sensor networks. In: Proceedings of the 1st International Workshop on Data Management for Sensor Networks, DMSN ’04, pp. 68–77. ACM, New York (2004)
Zhang, P., Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware design experiences in ZebraNet. In: SynSys, pp. 227–238 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Erik Buchmann.
Rights and permissions
About this article
Cite this article
Galpin, I., Brenninkmeijer, C.Y.A., Gray, A.J.G. et al. SNEE: a query processor for wireless sensor networks. Distrib Parallel Databases 29, 31–85 (2011). https://doi.org/10.1007/s10619-010-7074-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10619-010-7074-3