Abstract
The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
While only recently defined formally, SimplifiedLOF has been implicitly used (and adapted), often presumably unintentionally [i.e., not being aware of the special definition of the reachability distance (Eq. 2)], in many earlier variants of LOF. Here, for the first time, it is evaluated explicitly.
In fact, the number of true outliers expected to be ranked by chance among the top n positions is a fraction n / N of |O|, which yields \(P@n = \frac{n \cdot |O|}{N}\big / n = \frac{|O|}{N}\).
Available at: http://www.ipd.kit.edu/~muellere/HiCS/realworld.zip. Note that we have supplemented our collection with some of these datasets, without further preprocessing.
For unsupervised learning, both training and test sets can be used together, and we assume this is the case unless otherwise specified.
FastABOD requires at least a set of 3 neighbors, as it computes variances of angles to neighbors. LDOF, KDEOS, and ODIN require at least 2 neighbors.
We see the same overall tendency (although much weaker due to overall low values) if we use \(P@n\) and \({{\mathrm{AP}}}\) (both adjusted and unadjusted) instead of ROC AUC. This is expected since (Adjusted) \(P@n\) and (Adjusted) \({{\mathrm{AP}}}\) can yield additional insights when comparing results that are very good in terms of ROC AUC. In this aggregated evaluation, however, many results with weak scores are included. The corresponding plots are available online.
Therefore, as a side effect, such heat maps can also serve to visualize the profile of performance in terms of \(P@(x \cdot n)\) for \(x=1,\ldots ,9\).
This is not surprising given the relatively large amount of outliers (\(\approx \)75 %) in the base dataset.
Prima facie, this conclusion is valid, based on our experiments, for the dependency of related methods on a parameter choice regarding cardinality of a local neighborhood. Common sense suggests that we can have a similar expectation, mutatis mutandis, for other types of parameters for other kinds of methods.
References
Abe N, Zadrozny B, Langford J (2006) Outlier detection by active learning. In: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, pp 504–509. doi:10.1145/1150402.1150459
Achtert E, Kriegel HP, Schubert E, Zimek A (2013) Interactive data mining with 3D-parallel-coordinate-trees. In: Proceedings of the ACM international conference on management of data (SIGMOD), New York, pp 1009–1012. doi:10.1145/2463676.2463696
Aggarwal CC (2013) Outlier analysis. Springer, Berlin
Akoglu L, Tong H, Koutra D (2015) Graph-based anomaly detection and description: a survey. Data Mining Knowl Discov 29(3):626–688. doi:10.1007/s10618-014-0365-y
Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), Helsinki, pp 15–26. doi:10.1007/3-540-45681-3_2
Angiulli F, Pizzuti C (2005) Outlier mining in large high-dimensional data sets. IEEE Trans Knowl Data Eng 17(2):203–215. doi:10.1109/TKDE.2005.31
Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Barnett V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley, New York
Breunig MM, Kriegel HP, Ng R, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 93–104. doi:10.1145/342009.335388
Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surveys 41(3):1–58. doi:10.1145/1541880.1541882
Craswell N (2009a) Precision at n. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 2127–2128. doi:10.1007/978-0-387-39940-9_484
Craswell N (2009b) R-precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, p 2453. doi:10.1007/978-0-387-39940-9_486
Dang XH, Micenková B, Assent I, Ng R (2013) Outlier detection with space transformation and spectral analysis. In: Proceedings ofthe 13th SIAM international conference on data mining (SDM), Austin, pp 225–233
Dang XH, Assent I, Ng RT, Zimek A, Schubert E (2014) Discriminative features for identifying and interpreting outliers. In: Proceedings of the 30th International Conference on Data Engineering (ICDE), Chicago, pp 88–99. doi:10.1109/ICDE.2014.6816642
Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning (ICML), Pittsburgh, pp 233–240
de Vries T, Chawla S, Houle ME (2010) Finding local anomalies in very high dimensional space. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM), Sydney, pp 128–137. doi:10.1109/ICDM.2010.151
de Vries T, Chawla S, Houle ME (2012) Density-preserving projections for large-scale local anomaly detection. Knowl Inf Syst 32(1):25–52. doi:10.1007/s10115-011-0430-4
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Emmott AF, Das S, Dietterich T, Fern A, Wong WK (2013) Systematic construction of anomaly detection benchmarks from real data. In: Workshop on outlier detection and description, held in conjunction with the 19th ACM SIGKDD international conference on knowledge discovery and data mining, Chicago, pp 16–21
Estivill-Castro V (2002) Why so many clustering algorithms—a position paper. ACM SIGKDD Explor 4(1):65–75. doi:10.1145/568574.568575
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701. doi:10.1080/01621459.1937.10503522
Färber I, Günnemann S, Kriegel HP, Kröger P, Müller E, Schubert E, Seidl T, Zimek A (2010) On using class-labels in evaluation of clusterings. In: MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC
Gao J, Tan PN (2006) Converting output scores from outlier detection algorithms into probability estimates. In: Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, pp 212–221. doi:10.1109/ICDM.2006.43
Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36
Hautamäki V, Kärkkäinen I, Fränti P (2004) Outlier detection using k-nearest neighbor graph. In: Proceedings of the 17th international conference on pattern recognition (ICPR), Cambridge, pp 430–433. doi:10.1109/ICPR.2004.1334558
Hawkins D (1980) Identification of outliers. Chapman and Hall, London
Houle ME, Kriegel HP, Kröger P, Schubert E, Zimek A (2010) Can shared-neighbor distances defeat the curse of dimensionality? In: Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, pp 482–500. doi:10.1007/978-3-642-13818-8_34
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Jin W, Tung AKH, Han J, Wang W (2006) Ranking outliers using symmetric neighborhood relationship. In: Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore, pp 577–593. doi:10.1007/11731139_68
Keller F, Müller E, Böhm K (2012) HiCS: high contrast subspaces for density-based outlier ranking. In: Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC, pp 1037–1048. doi:10.1109/ICDE.2012.88
Knorr EM, Ng RT (1997) A unified notion of outliers: properties and computation. In: Proceedings of the 3rd ACM international conference on knowledge discovery and data mining (KDD), Newport Beach, pp 219–222. doi:10.1145/782010.782021
Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th international conference on very large data bases (VLDB), New York, pp 392–403
Kriegel HP, Schubert M, Zimek A (2008) Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 444–452. doi:10.1145/1401890.1401946
Kriegel HP, Kröger P, Schubert E, Zimek A (2009a) LoOP: local outlier probabilities. In: Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, pp 1649–1652. doi:10.1145/1645953.1646195
Kriegel HP, Kröger P, Zimek A (2009b) Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1–58. doi:10.1145/1497577.1497578
Kriegel HP, Kröger P, Schubert E, Zimek A (2011a) Interpreting and unifying outlier scores. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, pp 13–24. doi:10.1137/1.9781611972818.2
Kriegel HP, Schubert E, Zimek A (2011b) Evaluation of multiple clustering solutions. In: 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, pp 55–66
Kriegel HP, Schubert E, Zimek A (2015) The (black) art of runtime evaluation: Are we comparing algorithms or implementations? submitted
Latecki LJ, Lazarevic A, Pokrajac D (2007) Outlier detection with kernel density functions. In: Proceedings of the 5th international conference on machine learning and data mining in pattern recognition (MLDM), Leipzig, pp 61–75. doi:10.1007/978-3-540-73499-4_6
Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 157–166. doi:10.1145/1081870.1081891
Liu FT, Ting KM, Zhou ZH (2012) Isolation-based anomaly detection. ACM Trans Knowl Discov Data 6(1):31–39
Marques HO, Campello RJGB, Zimek A, Sander J (2015) On the internal evaluation of unsupervised outlier detection. In: Proceedings of the 27th international conference on scientific and statistical database management (SSDBM), San Diego, pp 7:1–12. doi:10.1145/2791347.2791352
Micenková B, van Beusekom J, Shafait F (2012) Stamp verification for automated document authentication. In: 5th International workshop on computational forensics
Müller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace projections for outlier ranking. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 434–445. doi:10.1109/ICDE.2011.5767916
Müller E, Assent I, Iglesias P, Mülle Y, Böhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: Proceedings of the 12th IEEE international conference on data mining (ICDM), Brussels, pp 529–538. doi:10.1109/ICDM.2012.112
Nemenyi P (1963) Distribution-free multiple comparisons. PhD thesis, New Jersey
Nguyen HV, Gopalkrishnan V (2010) Feature extraction for outlier detection in high-dimensional spaces. J Mach Learn Res Proc Track 10:66–75
Nguyen HV, Ang HH, Gopalkrishnan V (2010) Mining outliers with ensemble of heterogeneous detectors on random subspaces. In: Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, pp 368–383. doi:10.1007/978-3-642-12026-8_29
Orair GH, Teixeira C, Wang Y, Meira W Jr, Parthasarathy S (2010) Distance-based outlier detection: consolidation and renewed bearing. Proc VLDB Endow 3(2):1469–1480
Radovanović M, Nanopoulos A, Ivanović M (2014) Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans Knowl Data Eng. doi:10.1109/TKDE.2014.2365790
Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM international conference on management of data (SIGMOD), Dallas, pp 427–438. doi:10.1145/342009.335437
Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, pp 1047–1058. doi:10.1137/1.9781611972825.90
Schubert E, Zimek A, Kriegel HP (2014a) Generalized outlier detection with flexible kernel density estimates. In: Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, pp 542–550. doi:10.1137/1.9781611973440.63
Schubert E, Zimek A, Kriegel HP (2014b) Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Min Knowl Discov 28(1):190–237. doi:10.1007/s10618-012-0300-z
Schubert E, Koos A, Emrich T, Züfle A, Schmid KA, Zimek A (2015a) A framework for clustering uncertain data. Proc VLDB Endow 8(12):1976–1979
Schubert E, Zimek A, Kriegel HP (2015b) Fast and scalable outlier detection with approximate nearest neighbor ensembles. In: Proceedings of the 20th international conference on database systems for advanced applications (DASFAA), Hanoi, Vietnam, pp 19–36. doi:10.1007/978-3-319-18123-3_2
Tang J, Chen Z, Fu AWC, Cheung DW (2002) Enhancing effectiveness of outlier detections for low density patterns. In: Proceedings of the 6th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Taipei, pp 535–548. doi:10.1007/3-540-47887-6_53
Ting KM, Zhou GT, Liu FT, Tan SC (2013) Mass estimation. Mach Learn 90(1):127–160. doi:10.1007/s10994-012-5303-x
Vendramin L, Campello RJGB, Hruschka ER (2010) Relative clustering validity criteria: a comparative overview. Stat Anal Data Min 3(4):209–235. doi:10.1002/sam.10080
von Luxburg U, Williamson RC, Guyon I (2012) Clustering: science or art? JMLR Workshop Conf Proc 27:65–79
Vreeken J, Tatti N (2014) Interesting patterns, chapter 5. In: Aggarwal CC, Han J (eds) Frequent pattern mining. Springer, Berlin, pp 105–134. doi:10.1007/978-3-319-07821-2_5
Wang Y, Parthasarathy S, Tatikonda S (2011) Locality sensitive outlier detection: a ranking driven approach. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, pp 410–421. doi:10.1109/ICDE.2011.5767852
Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 8(7):1341–1390. doi:10.1162/neco.1996.8.7.1341
Yang J, Zhong N, Yao Y, Wang J (2008) Local peculiarity factor and its application in outlier detection. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, pp 776–784. doi:10.1145/1401890.1401983
Zhang E, Zhang Y (2009) Average precision. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Berlin, pp 192–193. doi:10.1007/978-0-387-39940-9_482
Zhang K, Hutter M, Jin H (2009) A new local distance-based outlier detection approach for scattered real-world data. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Bangkok, pp 813–822. doi:10.1007/978-3-642-01307-2_84
Zimek A, Vreeken J (2015) The blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectives. Mach Learn 98(1–2):121–155. doi:10.1007/s10994-013-5334-y
Zimek A, Schubert E, Kriegel HP (2012) A survey on unsupervised outlier detection in high-dimensional numerical data. Stat Anal Data Min 5(5):363–387. doi:10.1002/sam.11161
Zimek A, Campello RJGB, Sander J (2013a) Ensembles for unsupervised outlier detection: challenges and research questions. ACM SIGKDD Explor 15(1):11–22
Zimek A, Gaudet M, Campello RJGB, Sander J (2013b) Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, pp 428–436. doi:10.1145/2487575.2487676
Zimmermann A (2014) The data problem in data mining. ACM SIGKDD Explor 16(2):38–45. doi:10.1145/2783702.2783706
Acknowledgments
This project was partially funded by FAPESP (Brazil—Grant #2013/18698-4), CNPq (Brazil—Grants #304137/2013-8 and #400772/2014-0), NSERC (Canada), and the Danish Council for Independent Research—Technology and Production Sciences (FTP) (Denmark—Grant 10-081972).
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Johannes Fuernkranz.
Rights and permissions
About this article
Cite this article
Campos, G.O., Zimek, A., Sander, J. et al. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min Knowl Disc 30, 891–927 (2016). https://doi.org/10.1007/s10618-015-0444-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10618-015-0444-8