Tractability in constraint satisfaction problems: a survey | Constraints Skip to main content
Log in

Tractability in constraint satisfaction problems: a survey

  • Survey
  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Even though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abrahamson, K.A., Downey, R.G., & Fellows, M.R. (1995). Fixed-parameter tractability and completeness IV: On completeness for W[P] and PSPACE analogues. Annals of Pure and Applied Logic, 73(3), 235–276.

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, I., Gottlob, G., & Grohe, M. (2007). Hypertree width and related hypergraph invariants. European Journal of Combinatorics, 28(8), 2167–2181.

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.

    Article  MATH  Google Scholar 

  4. Arnborg, S. (1985). Efficient algorithms for combinatorial problems with bounded decomposability - a survey. BIT, 25(1), 2–23.

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnborg, S., Corneil, D.G., & Proskurowski, A. (1987). Complexity of finding an embedding in k-trees. SIAM journal of Algebraic and Discrete Methods, 8, 277–284.

    Article  MathSciNet  MATH  Google Scholar 

  6. Barto, L. (2011). The dichotomy for conservative constraint satisfaction problems revisited. In LICS (pp. 301–310): IEEE Computer Society.

  7. Barto, L. (2011). Finitely related algebras in congruence distributive varieties have near unanimity terms. Canadian Journal of Mathematics.

  8. Barto, L. (2015). The collapse of the bounded width hierarchy. Journal of Logic and Computation. doi:10.1093/logcom/exu070.

    Google Scholar 

  9. Barto, L., & Kozik, M. (2014). Constraint satisfaction problems solvable by local consistency methods. Journal of the ACM, 61(1), 3.

    Article  MathSciNet  Google Scholar 

  10. Barto, L., Kozik, M., & Niven, T. (2009). The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of bang-jensen and hell). SIAM Journal on Computing, 38(5), 1782–1802.

    Article  MathSciNet  MATH  Google Scholar 

  11. van Beek, P., & Dechter, R. (1995). On the minimality and decomposability of row-convex constraint networks. Journal of the ACM, 42(3), 543–561.

    Article  MathSciNet  MATH  Google Scholar 

  12. van Beek, P., & Dechter, R. (1997). Constraint tightness and looseness versus local and global consistency. Journal of the ACM, 44(4), 549–566.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertelè, U., & Brioshi, F. (1972). Nonserial dynamic programming. Academic Press.

  14. Bessière, C., Carbonnel, C., Hébrard, E., Katsirelos, G., & Walsh, T. (2013). Detecting and exploiting subproblem tractability. In Proceedings of the 23rd international joint conference on Artificial Intelligence (pp. 468–474). AAAI Press.

  15. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints, 4, 199–240.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bodirsky, M., & Chen, H. (2009). Relatively quantified constraint satisfaction. Constraints, 14(1), 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bodirsky, M., Chen, H., Kára, J., & von Oertzen, T. (2009). Maximal infinite-valued constraint languages. Theoretical Computer Science, 410(18), 1684–1693.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bodirsky, M., & Grohe, M. (2008). Non-dichotomies in constraint satisfaction complexity. In ICALP (pp. 184–196).

  19. Bodirsky, M., & Kára, J. (2008). The complexity of equality constraint languages. Theory Computing Systems, 43(2), 136–158.

    Article  MATH  Google Scholar 

  20. Bodirsky, M., & Kára, J. (2010). The complexity of temporal constraint satisfaction problems. Journal of the ACM, 57(2), 9:1–9:41.

    Article  Google Scholar 

  21. Bodlaender, H.L. (1996). A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6), 1305–1317.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bulatov, A.A. (2006). Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298(2), 321–339.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bulatov, A.A. (2006). A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM, 53(1), 66–120.

    Article  MathSciNet  Google Scholar 

  24. Bulatov, A.A. (2010). Bounded relational width. Tech. rep., School of Computer Science, Simon Fraser University.

  25. Bulatov, A.A. (2011). Complexity of conservative constraint satisfaction problems. ACM Transactions on Computational Logic, 12(4), 24.

    Article  MathSciNet  Google Scholar 

  26. Bulatov, A.A. (2013). The complexity of the counting constraint satisfaction problem. Journal of the ACM, 60(5), 34.

    MathSciNet  Google Scholar 

  27. Bulatov, A.A. (2014). Conservative constraint satisfaction re-revisited. preprint arXiv:1408.3690.

  28. Bulatov, A.A., & Dalmau, V. (2006). A simple algorithm for Mal’tsev constraints. SIAM Journal on Computing, 36(1), 16–27.

    Article  MathSciNet  MATH  Google Scholar 

  29. Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jalsenius, M., & Richerby, D. (2009). The complexity of weighted Boolean #CSP with mixed signs. Theoretical Computer Science, 410(38–40), 3949–3961.

    Article  MathSciNet  MATH  Google Scholar 

  30. Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jerrum, M., & McQuillan, C. (2013). The expressibility of functions on the boolean domain, with applications to counting CSPs. Journal of the ACM, 60(5), 32.

    MathSciNet  Google Scholar 

  31. Bulatov, A.A., & Jeavons, P.G. (2001). Algebraic structures in combinatorial problems. Tech. Rep. MATH-AL-4-2001, Technische Universität Dresden.

  32. Bulatov, A.A., Jeavons, P.G., & Krokhin, A.A. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34, 720–742.

    Article  MathSciNet  MATH  Google Scholar 

  33. Bulatov, A.A., Krokhin, A.A., & Jeavons, P. (2001). The complexity of maximal constraint languages. In J.S. Vitter, P.G. Spirakis, & M. Yannakakis (Eds.), STOC (pp. 667–674). ACM.

  34. Bulatov, A.A., Krokhin, A.A., & Larose, B. (2008). Dualities for constraint satisfaction problems. In N. Creignou, P.G. Kolaitis, & H. Vollmer (Eds.), Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar]., Lecture Notes in Computer Science, (Vol. 5250 pp. 93–124). Springer.

  35. Bulatov, A.A., & Marx, D. (2014). Constraint satisfaction parameterized by solution size. SIAM Journal on Computing, 43(2), 573–616.

    Article  MathSciNet  MATH  Google Scholar 

  36. Bulatov, A.A., Valeriote, M., P. Kolaitis, & H. Vollmer (2008). Recent results on the algebraic approach to the CSP. In N. Creignou (Ed.), Complexity of Constraints, Lecture Notes in Computer Science, (Vol. 5250 pp. 68–92). Berlin / Heidelberg: Springer.

  37. Carbonnel, C., Cooper, M.C., & Hebrard, E. (2014). On backdoors to tractable constraint languages. In B. O’Sullivan (Ed.), Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, Lecture Notes in Computer Science, (Vol. 8656 pp. 224–239). Springer.

  38. Carvalho, C., Egri, L., Jackson, M., & Niven, T. (2011). On Maltsev digraphs. In Computer Science–Theory and Applications (pp. 181–194). Springer.

  39. Chen, H. (2009). A rendezvous of logic, complexity, and algebra. ACM Computing Surveys, 42(1).

  40. Chen, H., Dalmau, V., & Grußien, B. (2013). Arc consistency and friends. Journal of Logic and Computation, 23(1), 87–108.

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, H., & Grohe, M. (2010). Constraint satisfaction with succinctly specified relations. Journal of Computer and System Sciences, 76(8), 847–860.

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen, J., Kanj, I.A., & Xia, G. (2010). Improved upper bounds for vertex cover. Theoretical Computer Science, 411(40), 3736–3756.

    Article  MathSciNet  MATH  Google Scholar 

  43. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., & Vuskovic, K. (2005). Recognizing Berge graphs. Combinatorica, 25(2), 143–186.

    Article  MathSciNet  MATH  Google Scholar 

  44. Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006). The strong perfect graph theorem. Annals of Math, 164(1), 51–229.

    Article  MathSciNet  MATH  Google Scholar 

  45. Cobham, A. (1964). The intrinsic computational difficulty of functions. In Proceedings of International Congress for Logic, Methodology, and Philosophy of Science (pp. 24–30). North-Holland.

  46. Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P.G., & živný, S. (2013). An algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing, 42(5), 1915–1939.

    Article  MathSciNet  MATH  Google Scholar 

  47. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., & Salamon, A.Z. (2012). The tractability of CSP classes defined by forbidden patterns. Journal of Artificial Intelligence Research (JAIR), 45, 47–78.

    MathSciNet  MATH  Google Scholar 

  48. Cohen, D.A., Cooper, M.C., Green, M.J., & Marx, D. (2011). On guaranteeing polynomially bounded search tree size. In J.H.M. Lee (Ed.), CP, Lecture Notes in Computer Science, (Vol. 6876 pp. 160–171). Springer.

  49. Cohen, D.A., Cooper, M.C., Jeavons, P., & Krokhin, A.A. (2006). The complexity of soft constraint satisfaction. Artificial Intelligence, 170(11), 983–1016.

    Article  MathSciNet  MATH  Google Scholar 

  50. Cohen, D.A., Jeavons, P., Jonsson, P., & Koubarakis, M. (2000). Building tractable disjunctive constraints. Journal of the ACM, 47(5), 826–853.

    Article  MathSciNet  Google Scholar 

  51. Cohen, D.A., & Jeavons, P.G. (2006). The complexity of constraint languages. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (pp. 245–280). Elsevier.

  52. Cook, S.A. (1971). The complexity of theorem-proving procedures. In M.A. Harrison, R.B. Banerji, & J.D. Ullman (Eds.), STOC (pp. 151–158). ACM.

  53. Cooper, M.C. (1999). Linear-time algorithms for testing the realisability of line drawings of curved objects. Artificial Intelligence, 108, 31–67.

    Article  MathSciNet  MATH  Google Scholar 

  54. Cooper, M.C. (2014). Beyond consistency and substitutability. In CP (pp. 256–271).

  55. Cooper, M.C., Cohen, D.A., & Jeavons, P. (1994). Characterising tractable constraints. Artificial Intelligence, 65(2), 347–361.

    Article  MathSciNet  MATH  Google Scholar 

  56. Cooper, M.C., & Escamocher, G. (2012). A dichotomy for 2-constraint forbidden CSP patterns. In J. Hoffmann, & B. Selman (Eds.), AAAI. AAAI Press.

  57. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010). Soft arc consistency revisited. Artificial Intelligence, 174(7–8), 449–478.

    Article  MathSciNet  MATH  Google Scholar 

  58. Cooper, M.C., Jeavons, P.G., & Salamon, A.Z. (2010). Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination. Artificial Intelligence, 174(9–10), 570–584.

    Article  MathSciNet  MATH  Google Scholar 

  59. Cooper, M.C., Maris, F., & Régnier, P. (2014). Monotone temporal planning: Tractability, extensions and applications. Journal of Artificial Intelligence Research (JAIR), 50, 447–485.

    MATH  Google Scholar 

  60. Cooper, M.C., Mouelhi, A.E., Terrioux, C., & Zanuttini, B. (2014). On broken triangles. In O’Sullivan, B (Ed.), Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, Lecture Notes in Computer Science, (Vol. 8656 pp. 9–24). Springer.

  61. Cooper, M.C., & živný, S. (2011). Hybrid tractability of valued constraint problems. Artificial Intelligence, 175(9-10), 1555–1569.

    Article  MathSciNet  MATH  Google Scholar 

  62. Cooper, M.C., & živný, S. (2012). Tractable triangles and cross-free convexity in discrete optimisation. Journal of Artificial Intelligence Research (JAIR), 44, 455–490.

    MATH  Google Scholar 

  63. Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In Handbook of theoretical computer science, Volume B: formal models and sematics (B) (pp. 193–242).

  64. Creignou, N., & Hébrard, J.J. (1997). On generating all solutions of generalized satisfiability problems. Informatique Théorique et Applications, 31(6), 499–511.

    MATH  Google Scholar 

  65. Creignou, N., Kolaitis, P., & Vollmer, H. (Eds.) (2008). Complexity of Constraints, Lecture Notes in Computer Science, Vol. 5250. Springer.

  66. Dalmau, V. (2000). A new tractable class of constraint satisfaction problems, AMAI.

  67. Dalmau, V. (2006). Generalized majority-minority operations are tractable. Logical Methods in Computer Science, 2(4), 438–447.

    Article  MathSciNet  Google Scholar 

  68. Dalmau, V., & Pearson, J. (1999). Closure functions and width 1 problems. In Principles and Practice of Constraint Programming–CP 99 (pp. 159–173). Springer.

  69. David, P. (1995). Using pivot consistency to decompose and solve functional CSPs. Journal of Artificial Intelligence Research (JAIR), 2, 447–474.

    MATH  Google Scholar 

  70. de Givry, S., Schiex, T., & Verfaillie, G. (2006). Exploiting tree decomposition and soft local consistency in weighted CSP. In AAAI (pp. 22–27).

  71. de Haan, R. Kanj (2015). On the subexponential-time complexity of CSP. Journal of Artificial Intelligence Research, 52, 203–234.

  72. Dechter, R. (1992). From local to global consistency. Artificial Intelligence, 55 (1), 87–108.

    Article  MathSciNet  MATH  Google Scholar 

  73. Dechter, R. (2003). Constraint processing, (pp. 94104–3205). San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  74. Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49(1-3), 61–95.

    Article  MathSciNet  MATH  Google Scholar 

  75. Dechter, R., & Pearl, J. (1987). Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34(1), 1–38.

    Article  MathSciNet  Google Scholar 

  76. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., & Stevens, K. (2005). An o(2o(k)n3) FPT algorithm for the undirected feedback vertex set problem. In L. Wang (Ed.), Computing and Combinatorics, 11th Annual International Conference, COCOON 2005, Kunming, China, August 16–29, 2005, Proceedings, Lecture Notes in Computer Science, (Vol. 3595 pp. 859–869). Springer.

  77. Deville, Y., Barette, O., & Hentenryck, P.V. (1999). Constraint satisfaction over connected row convex constraints. Artificial Intelligence, 109(1-2), 243–271.

    Article  MathSciNet  MATH  Google Scholar 

  78. Downey, R.G., & Fellows, M.R. (1995). Fixed-parameter tractability and completeness I: Basic results. SIAM Journal on Computing, 24(4), 873–921.

    Article  MathSciNet  MATH  Google Scholar 

  79. Downey, R.G., Fellows, M.R., & Stege, U. (1999). Parameterized complexity: A framework for systematically confronting computational intractability. In Contemporary trends in discrete mathematics: From DIMACS and DIMATIA to the future, (Vol. 49 pp. 49–99). AMS-DIMACS Proceedings Series.

  80. Drakengren, T., & Jonsson, P. (2005). Computational complexity of temporal constraint problems. In M. Fisher, D. Gabbay, & L. Vila (Eds.), Handbook of temporal reasoning in artificial intelligence (pp. 197–218). Elsevier.

  81. Dyer, M., & Richerby, D. (2013). An effective dichotomy for the counting constraint satisfaction problem. SIAM Journal on Computing, 42(3), 1245–1274.

    Article  MATH  Google Scholar 

  82. Dyer, M.E., Goldberg, L.A., & Jerrum, M. (2009). The complexity of weighted boolean #CSP. SIAM Journal on Computing, 38(5), 1970–1986.

    Article  MathSciNet  MATH  Google Scholar 

  83. Edmonds, J. (1965). Paths, trees and flowers. Canadian Journal of Mathematics, 17, 449–467.

    Article  MathSciNet  MATH  Google Scholar 

  84. Feder, T., & Hell, P. (2006). Full constraint satisfaction problems. SIAM Journal on Computing, 36(1), 230–246.

    Article  MathSciNet  MATH  Google Scholar 

  85. Feder, T., & Kolaitis, P.G. (2006). Closures and dichotomies for quantified constraints. Electronic Colloquium on Computational Complexity (ECCC), 13(160).

  86. Feder, T., & Vardi, M.Y. (1998). The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing, 28(1), 57–104.

    Article  MathSciNet  MATH  Google Scholar 

  87. Freuder, E.C. (1990). Complexity of k-tree structured constraint satisfaction problems. In H.E. Shrobe, T.G. Dietterich, & W.R. Swartout (Eds.), AAAI (pp. 4–9). AAAI Press / The MIT Press.

  88. Gao, J., Yin, M., & Zhou, J. (2011). Hybrid tractable classes of binary quantified constraint satisfaction problems. In W. Burgard, & D. Roth (Eds.), AAAI. AAAI Press.

  89. Gao, Y. (2003). Phase transition of tractability in constraint satisfaction and bayesian network inference. In UAI (pp. 265–271).

  90. Garey, M., & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: W.H.Freeman and Company.

    MATH  Google Scholar 

  91. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., & Zivny, S. (2014). Backdoors into heterogeneous classes of SAT and CSP. In C.E. Brodley, & P. Stone (Eds.), Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada (pp. 2652–2658). AAAI Press. http://www.aaai.org/Library/AAAI/aaai14contents.php.

  92. Gerevini, A., & Cristani, M. (1997). On finding a solution in temporal constraint satisfaction problems. In IJCAI (pp. 1460–1465).

  93. Gottlob, G., Leone, N., & Scarcello, F. (2002). Hypertree decomposition and tractable queries. Journal of Computer and System Sciences, 64(3), 579–627.

    Article  MathSciNet  MATH  Google Scholar 

  94. Green, M.J., & Cohen, D.A. (2008). Domain permutation reduction for constraint satisfaction problems. Artificial Intelligence, 172(8-9), 1094–1118.

    Article  MathSciNet  MATH  Google Scholar 

  95. Grohe, M. (2001). Generalized model-checking problems for first-order logic. In STACS 2001 (pp. 12–26). Springer.

  96. Grohe, M. (2006). The structure of tractable constraint satisfaction problems. In MFCS (pp. 58–72).

  97. Grohe, M. (2007). The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM, 54(1), 1–24.

    Article  MathSciNet  Google Scholar 

  98. Grohe, M., Kreutzer, S., & Siebertz, S. (2014). Deciding first-order properties of nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (pp. 89–98). ACM.

  99. Grohe, M. (2014). Marx, D.: Constraint solving via fractional edge covers. ACM Transactions on Algorithms, 11(1), 4.

    Article  MathSciNet  Google Scholar 

  100. Grötschel, M., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1, 169–198.

    Article  MathSciNet  MATH  Google Scholar 

  101. Hell, P., & Nešetril, J. (1990). On the complexity of h-coloring. Journal of Combinatorial Theory, Series B, 48(1), 92–110.

    Article  MathSciNet  MATH  Google Scholar 

  102. Hell, P., & Nešetril, J. (2008). Colouring, constraint satisfaction, and complexity. Computer Science Review, 2(3), 143–163.

    Article  MATH  Google Scholar 

  103. Hermann, M., & Richoux, F. (2009). On the computational complexity of monotone constraint satisfaction problems. In S. Das, & R. Uehara (Eds.), WALCOM, Lecture Notes in Computer Science, (Vol. 5431 pp. 286–297). Springer.

  104. Idziak, P.M., Markovic, P., McKenzie, R., Valeriote, M., & Willard, R. (2010). Tractability and learnability arising from algebras with few subpowers. SIAM Journal on Computing, 39(7), 3023–3037.

    Article  MathSciNet  MATH  Google Scholar 

  105. Iwata, S., & Orlin, J.B. (2009). A simple combinatorial algorithm for submodular function minimization. In SODA (pp. 1230–1237).

  106. Jeavons, P., Cohen, D., & Gyssens, M. (1995). A unifying framework for tractable constraints. In Proceedings 1st international conference on constraint programming, CP’95, (Vol. 976 pp. 276–291). Springer-Verlag.

  107. Jeavons, P., Cohen, D.A., & Gyssens, M. (1997). Closure properties of constraints. Journal of the ACM, 44(4), 527–548.

    Article  MathSciNet  MATH  Google Scholar 

  108. Jeavons, P., & Petke, J. (2012). Local consistency and SAT-solvers. Journal of Artificial Intelligence Research (JAIR), 43, 329–351.

    MathSciNet  MATH  Google Scholar 

  109. Jeavons, P.G. (1998). Constructing constraints. In Proceedings 4th International Conference on Constraint Programming—CP’98 (Pisa, October 1998), Lecture Notes in Computer Science, (Vol. 1520 pp. 2–16). Springer-Verlag.

  110. Jeavons, P.G. (1998). On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200, 185–204.

    Article  MathSciNet  MATH  Google Scholar 

  111. Jeavons, P.G., Cohen, D.A., & Cooper, M.C. (1998). Constraints, consistency and closure. Artificial Intelligence, 101(1–2), 251–265.

    Article  MathSciNet  MATH  Google Scholar 

  112. Jeavons, P.G., & Cooper, M.C. (1995). Tractable constraints on ordered domains. Artificial Intelligence, 79(2), 327–339.

    Article  MathSciNet  MATH  Google Scholar 

  113. Jeavons, P.G., Krokhin, A.A., & živný, S. (2014). The complexity of valued constraint satisfaction: Bulletin of EATCS.

  114. Jégou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems. In AAAI (pp. 731–736). Menlo Park: AAAI Press.

  115. Jonsson, P., & Bäckström, C. (1998). A unifying approach to temporal constraint reasoning. Artificial Intelligence, 102(1), 143–155.

    Article  MathSciNet  MATH  Google Scholar 

  116. Jonsson, P., & Drakengren, T. (1997). A complete classification of tractability in RCC-5. Journal of Artificial Intelligence Research, 6, 211–221.

    MathSciNet  MATH  Google Scholar 

  117. Jonsson, P., Lagerkvist, V., Nordh, G., & Zanuttini, B. (2013). Complexity of SAT problems, clone theory and the exponential time hypothesis. In S. Khanna (Ed.), SODA (pp. 1264–1277). SIAM.

  118. Karp, R.M. (1972). Reducibility among combinatorial problems. In R.E. Miller, & J.W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). Plenum Press.

  119. Kazda, A. (2011). CSP for binary conservative relational structures. preprint arXiv:1112.1099.

  120. Kolmogorov, V., Krokhin, A., & Rolinek, M. (2015). The complexity of general-valued CSPs. arXiv preprint arXiv:1502.07327.

  121. Kolmogorov, V., & živný, S. (2013). The complexity of conservative valued CSPs. Journal of the ACM, 60(2), 10.

    Article  MathSciNet  Google Scholar 

  122. Koubarakis, M. (1996). Tractable disjunctions of linear constraints. In E.C. Freuder (Ed.), CP, Lecture Notes in Computer Science, (Vol. 1118 pp. 297–307). Springer.

  123. Kozik, M. (2008). A finite set of functions with an EXPTIME-complete composition problem. Theoretical Computer Science, 407(1–3), 330–341.

    Article  MathSciNet  MATH  Google Scholar 

  124. Kozik, M., Krokhin, A., Valeriote, M., & Willard, R. Characterizations of several Maltsev conditions. preprint (2013). (to appear in Algebra Universalis).

  125. Krokhin, A., Jeavons, P., & Jonsson, P. (2003). Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50, 591–640.

    Article  MathSciNet  Google Scholar 

  126. Krokhin, A., Jeavons, P., & Jonsson, P. (2004). Constraint satisfaction problems on intervals and lengths. SIAM Journal on Discrete Mathematics, 17(3), 453–477.

    Article  MathSciNet  MATH  Google Scholar 

  127. Kun, G., & Szegedy, M. (2009). A new line of attack on the dichotomy conjecture. In M. Mitzenmacher (Ed.), Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009 (pp. 725–734). ACM.

  128. Ladner, R.E. (1975). On the structure of polynomial time reducibility. Journal of the ACM, 22(1), 155–171.

    Article  MathSciNet  MATH  Google Scholar 

  129. Larose, B., Loten, C., & Tardif, C. (2007). A characterisation of first-order constraint satisfaction problems. preprint arXiv:0707.2562.

  130. Larose, B., & Zádori, L. (2006). Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. IJAC, 16(3), 563–582.

    MATH  Google Scholar 

  131. Lesaint, D., Azarmi, N., Laithwaite, R., & Walker, P. (1998). Engineering dynamic scheduler for Work Manager. BT Technology Journal, 16, 16–29.

    Article  Google Scholar 

  132. Lin, B. (2015). The parameterized complexity of k-biclique. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015 (pp. 605–615).

  133. Luczak, T., & Nesetril, J. (2006). A probabilistic approach to the dichotomy problem. SIAM Journal on Computing, 36(3), 835–843.

    Article  MathSciNet  MATH  Google Scholar 

  134. Marx, D. (2005). Parameterized complexity of constraint satisfaction problems. Computational Complexity, 14(2), 153–183.

    Article  MathSciNet  MATH  Google Scholar 

  135. Marx, D. (2010). Approximating fractional hypertree width. ACM Transactions on Algorithms, 6(2), 29:1–29:17.

    Article  MathSciNet  Google Scholar 

  136. Marx, D. (2011). Tractable structures for constraint satisfaction with truth tables. Theory Computing System, 48(3), 444–464.

    Article  MathSciNet  MATH  Google Scholar 

  137. Marx, D. (2013). Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal of the ACM, 60(6), 42.

    Article  MathSciNet  Google Scholar 

  138. Mouelhi, A.E., Jégou, P., & Terrioux, C. (2014). Different classes of graphs to represent microstructures for CSPs (Vol. 8323, pp. 21–38).

  139. Naanaa, W. (2013). Unifying and extending hybrid tractable classes of CSPs. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 407–424.

    Article  Google Scholar 

  140. Ordyniak, S., Paulusma, D., & Szeider, S. (2013). Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Computer Science, 481, 85–99. doi:10.1016/j.tcs.2012.12.039.

    Article  MathSciNet  MATH  Google Scholar 

  141. Papadimitriou, C.H., & Yannakakis, M. (1997). On the complexity of database queries. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems (pp. 12–19). ACM.

  142. Pearson, J.K., & Jeavons, P.G. (1997). A survey of tractable constraint satisfaction problems. Tech. Rep. CSD-TR-97-15, Royal Holloway, University of London.

  143. Petke, J., & Jeavons, P. (2011). The order encoding: From tractable CSP to tractable SAT. In K.A. Sakallah, & L. Simon (Eds.), SAT, Lecture Notes in Computer Science, (Vol. 6695 pp. 371–372). Springer.

  144. Pralet, C., & Verfaillie, G. (2012). Time-dependent simple temporal networks. In CP (pp. 608–623).

  145. Purvis, L., & Jeavons, P. (1999). Constraint tractability theory and its application to the product development process for a constraint-based scheduler. In Proceedings of 1st International Conference on The Practical Application of Constraint Technologies and Logic Programming - PACLP’99 (pp. 63–79). Practical Applications Company.

  146. Robertson, N., & Seymour, P.D. (1995). Graph minors XIII. The disjoint paths problem. Journal of Combinatorial Theory Series B, 63(1), 65–110.

    Article  MathSciNet  MATH  Google Scholar 

  147. Salamon, A.Z., & Jeavons, P.G. (2008). Perfect constraints are tractable. In CP, Lecture Notes in Computer Science, (Vol. 5202 pp. 524–528): Springer.

  148. Samer, M., & Szeider, S. (2010). Constraint satisfaction with bounded treewidth revisited. Journal of Computer and System Sciences, 76(2), 103–114.

    Article  MathSciNet  MATH  Google Scholar 

  149. Schaefer, T.J. (1978). The complexity of satisfiability problems. In Proceedings 10th ACM Symposium on Theory of Computing, STOC’78 (pp. 216–226).

  150. Scott, A.D., & Sorkin, G.B. (2009). Polynomial constraint satisfaction problems, graph bisection, and the Ising partition function. ACM Transactions on Algorithms, 5(4), 45:1–45:27.

    Article  MathSciNet  Google Scholar 

  151. Thapper, J., & živný, S. (2012). The power of linear programming for valued CSPs. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012 (pp. 669–678). IEEE Computer Society.

  152. Thapper, J., & živný, S. (2013). The complexity of finite-valued CSPs. In D. Boneh, T. Roughgarden, & J. Feigenbaum (Eds.), STOC (pp. 695–704). ACM.

  153. van Hoeve, W.J., & Katriel, I. (2006). Global constraints. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of Constraint Programming (chap. 6, pp. 169–208). Elsevier.

  154. Welsh, D. (1993). Complexity: Knots, Colourings and Counting. Cambridge University Press.

  155. Werner, T. (2007). A linear programming approach to max-sum problem: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1165–1179.

    Article  Google Scholar 

  156. Willard, R. (2010). Testing expressibility is hard. In D. Cohen (Ed.), CP, Lecture Notes in Computer Science, (Vol. 6308 pp. 9–23). Springer.

  157. Williams, R., Gomes, C.P., & Selman, B. (2003). Backdoors to typical case complexity. In G. Gottlob, & T. Walsh (Eds.), IJCAI (pp. 1173–1178). Morgan Kaufmann.

  158. Yorke-Smith, N., & Gervet, C. (2009). Certainty closure: Reliable constraint reasoning with incomplete or erroneous data. ACM Transactions on Computational Logic, 10(1).

  159. živný, S. (2012). The complexity of valued constraint satisfaction problems. Cognitive technologies. Springer.

  160. Zytnicki, M., Gaspin, C., & Schiex, T. (2008). DARN! A weighted constraint solver for RNA motif localization. Constraints, 13(1–2), 91–109.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Cooper.

Additional information

Supported by ANR Project ANR-10-BLAN-0210 and EPSRC grant EP/L021226/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbonnel, C., Cooper, M.C. Tractability in constraint satisfaction problems: a survey. Constraints 21, 115–144 (2016). https://doi.org/10.1007/s10601-015-9198-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-015-9198-6

Keywords

Navigation