Abstract
An important tool in matrix optimization problems is the strong semismoothness of the projection mapping onto the cone of real symmetric positive semidefinite matrices, and the explicit formula for its \({\text {B}}\)(ouligand)-subdifferentials. In this paper, we examine the corresponding results for the so-called matrix simplex, that is, the set of real symmetric positive semidefinite matrices whose traces are equal to one. This result complements the current literature and enlarges the toolbox of matrix spectral operators whose \({\text {B}}\)-subdifferentials are explicitly formulated. Since the matrix simplex frequently arises in subproblems for solving matrix optimization problems, the derived results can potentially serve as a useful tool for efficiently solving these problems. As an illustration, we present a numerical example to demonstrate that the proposed approach can outperform the existing approaches which used projection mapping onto positive semidefinite matrix cone directly.
Similar content being viewed by others
References
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000)
Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Program. 95, 431–474 (2003)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Comon, P., Golub, G., Lim, L.-H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)
Ding, C.: An introduction to a class of matrix optimization problems. Ph.D. thesis, National University of Singapore, (2012)
Ding, C., Sun, D.F., Toh, K.-C.: An introduction to a class of matrix cone programming. Math. Program. 144, 141–179 (2014)
Ding, C., Sun, D.F., Sun, J., Toh, K.-C.: Spectral operators of matrices. Math. Program. 168, 509–531 (2018)
Ding, C., Sun, D.F., Sun, J., Toh, K.-C.: Spectral operators of matrices: semismoothness and characterizations of the generalized Jacobian. SIAM J. Optim. 30, 630–659 (2020)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York (2003)
Han, J.Y., Sun, D.F.: Newton and quasi-Newton methods for normal maps with polyhedral sets. J. Optim. Theory Appl. 94, 659–676 (1997)
Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1977)
Kummer, B.: Newton‘s method for non-differentiable functions. In: Guddat, J., Bank, B., Hollatz, H., Kall, P., Karte, D., Kummer, B., Lommatzsch, K., Tammer, L., Vlach, M., Zimmermann, K. (eds.) Advances in Mathematical Optimization. Akademi-Verlag, Berlin (1988)
Landsberg, J.M.: Tensors: Geometry and Applications. Graduate Studies in Mathematics 128, AMS, Providence, RI, (2012)
Laurent, M.: Sums of squares, moment matrices and optimization over polynomials, in Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl. 149, M. Putinar and S. Sullivant, eds., pp. 157–270, Springer, New York, (2009)
Li, G., Qi, L., Yu, G.: Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl. 438, 813–833 (2013)
Li, X., Sun, D.F., Toh, K.-C.: QSDPNAL: a two-phase proximal augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10, 703–743 (2018)
Nesterov, Y.: A method for solving the convex programming problem with convergence rate \(O(1/k^2)\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)
Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
Pang, J.S.: Newton‘s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)
Pang, J.S., Ralph, D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21, 401–426 (1996)
Pang, J.S., Sun, D.F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28, 272–284 (2003)
Pang, J.S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM. J. Optim. 3, 443–465 (1993)
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)
Qi, L., Sun, J.: A nonsmooth version of Newton‘s method. Math. Program. 58, 353–367 (1993)
Robinson, S.M.: Generalized equations. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 346–367. Springer-Verlag, Berlin (1983)
Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1998)
Sun, D.F., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its applications in inverse eigenvalue problems. SIAM J. Numer. Anal. 40, 2352–2367 (2003)
Sun, D.F., Sun, J.: Semismoothness matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)
Sun, D.F., Toh, K.-C., Yuan, Y.C., Zhao, X.Y.: SDPNAL\(+\): a Matlab software for semidefinite programming with bound constraints (version 1.0). Optim. Methods Softw. 35, 87–115 (2020)
Sturm, J.F.: SeDuMi 1.02: a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999)
Toh, K.-C., Todd, M.J., Tutuncu, R.H.: SDPT3: a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)
Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms and Applications. Kluwer Academic Publishers, Boston (2000)
Yang, L.Q., Sun, D.F., Toh, K.-C.: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7, 331–366 (2015)
Zhao, X.Y., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)
Acknowledgements
This work is partially supported by National Science Foundation of China (Grant Nos. 11771328 and 12171128), Young Elite Scientists Sponsorship Program by Tianjin, and the Natural Science Foundation of Zhejiang Province, China (Grant No. LD19A010002). The second author’s work is partially supported by a research grant from Australian Research Council (Grant No. DP190100555).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hu, S., Li, G. \({\text {B}}\)-subdifferentials of the projection onto the matrix simplex. Comput Optim Appl 80, 915–941 (2021). https://doi.org/10.1007/s10589-021-00316-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-021-00316-0