Nonsmooth exact penalization second-order methods for incompressible bi-viscous fluids | Computational Optimization and Applications Skip to main content
Log in

Nonsmooth exact penalization second-order methods for incompressible bi-viscous fluids

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the exact penalization of the incompressibility condition \(\text {div}(\mathbf {u})=0\) for the velocity field of a bi-viscous fluid in terms of the \(L^1\)–norm. This penalization procedure results in a nonsmooth optimization problem for which we propose an algorithm using generalized second-order information. Our method solves the resulting nonsmooth problem by considering the steepest descent direction and extra generalized second-order information associated to the nonsmooth term. This method has the advantage that the divergence-free property is enforced by the descent direction proposed by the method without the need of build-in divergence-free approximation schemes. The inexact penalization approach, given by the \(L^2\)-norm, is also considered in our discussion and comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aposporidis, A., et al.: A mixed formulation of the Bingham fluid flow problem: analysis and numerical solution. Comput. Methods Appl. Mech. Eng. 200, 2434–2446 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arrow, K.J., Azawa, H., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming. Stanford University Press, Stanford (1953)

    MATH  Google Scholar 

  3. Babušca, I.: Error-bounds for finite element method. Numerische Mathematik 16, 322–333 (1971)

    Article  MathSciNet  Google Scholar 

  4. Bercovier, M., Engelman, M.: A finite element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313–326 (1980)

    Article  MathSciNet  Google Scholar 

  5. Burke, J.K.: Calmness and exact penalization. SIAM J. Control Optim. 29(2), 493–497 (1991)

    Article  MathSciNet  Google Scholar 

  6. Burke, J.K.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29(4), 968–998 (1991)

    Article  MathSciNet  Google Scholar 

  7. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, New York (2013)

    MATH  Google Scholar 

  8. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, London (2013)

    Book  Google Scholar 

  9. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  10. De los Reyes, J.C., González-Andrade, S.: Path following methods for steady laminar Bingham flow in cylindrical pipes. ESAIM Math. Model. Numer. Anal. 43, 81–117 (2009)

  11. De los Reyes, J.C., González-Andrade, S.: Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. J. Comput. Appl. Math. 235, 11–32 (2010)

  12. De los Reyes, J.C., González-Andrade, S.: A combined BDF-semismooth Newton approach for time-dependent Bingham flow. Numer. Methods Partial Differ. Equ. 28, 834–860 (2012)

  13. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1996)

    Book  Google Scholar 

  14. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  15. Fusi, L., Farina, A., Rosso, F.: Retrieving the Bingham model from a bi-viscous model: some explanatory remarks. Appl. Math. Lett. 27, 11–14 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  Google Scholar 

  17. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. Giaquinta, M., Modica, G.: Mathematical Analysis: An Introduction to Functions of Several Variables. Birkhäuser, Boston (2010)

    MATH  Google Scholar 

  19. Glowinski, R.: On Alternating Direction Methods of Multipliers: a Historical Perspective. In Modeling Simulation and Optimization for Science and Technology, pp. 59–82. Springer, Berlin (2014)

    MATH  Google Scholar 

  20. González-Andrade, S.: Semismooth Newton and path-following methods for the numerical simulation of Bingham fluids, PhD thesis, EPN Quito (2008)

  21. González-Andrade, S.: A preconditioned descent algorithm for variational inequalities of the second kind involving the p-Laplacian operator. Comput. Optim. Appl. 66, 123–162 (2017)

    Article  MathSciNet  Google Scholar 

  22. De los Reyes, J.C., González-Andrade, S.: Path following methods for steady laminar Bingham flow in cylindrical pipes. ESAIM Math. Modell. Numer. Anal. 43, 81–117 (2009)

  23. González-Andrade, S., López-Ordóñez, S.: A multigrid optimization algorithm for the numerical solution of quasilinear variational inequalities involving the p-Laplacian. Comput. Math. Appl. 75, 1107–1127 (2018)

    Article  MathSciNet  Google Scholar 

  24. Huilgol, R.R., Nguyen, Q.D.: Variational principles and variational inequalities for the unsteady flows of a yield stress fluid. Int. J. Non-Linear Mech. 36, 49–67 (2001)

    Article  MathSciNet  Google Scholar 

  25. Huilgol, R.R., You, Z.: Application of the augmented Lagrangian method to steady pipe flows of Bingham. Casson and Herschel-Bulkley fluids. J. Non-Newtonian Fluid Mech. 128, 126–143 (2005)

    Article  Google Scholar 

  26. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  27. Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. Studies in Applied Mathematics, SIAM, U.S.A. (1988)

  28. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  29. Laaber, P.: Numerical simulation of a three-dimensional Bingham fluid flow (2008)

  30. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Germany (1971)

    Book  Google Scholar 

  31. De los Reyes, J.C., Merino, P.: The second order method with enriched Hessian information for imaging composite sparse optimization problems. arXiv:2009.01878v3 (2021)

  32. Peypouquet, J.: Convex Optimization in Normed Spaces: Theory, Methods and Examples. Springer, London (2015)

    Book  Google Scholar 

  33. Stadler, G.: Elliptic optimal control problems with L 1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44, 159 (2009)

    Article  MathSciNet  Google Scholar 

  34. Tanner, R., Milthorpe, J.: Numerical simulation of the flow of fluids with yield stress. Num. Meth. Lam. Turb. Fl. 680–690 (1983)

  35. O’Donovan, E.J., Tanner, R.I.: Numerical study of the Bingham squeeze film problem. J. Non-Newtonian Fluid Mech. 15, 75–83 (1984)

  36. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, New York (2001)

    MATH  Google Scholar 

  37. Treskatis, T., Moyers-González, M., Price, C.J.: An accelerated dual proximal gradient method for applications in viscoplasticity. J. Non-Newtonian Fluid Mech. 238, 115–130 (2016)

    Article  MathSciNet  Google Scholar 

  38. Treskatis, T.: Fast proximal algorithms for applications in viscoplasticity., PhD thesis, University of Canterbury (2016)

  39. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  40. Wilbrandt, U.: Stokes–Darcy Equations Analytic and Numerical Analysis. Birkhäuser, Cham (2019)

    Book  Google Scholar 

  41. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in banach spaces. Appl. Math. Optim. 5, 49–62 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Merino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially supported by Escuela Politécnica Nacional within the project PIGR-18-03 and Secretaría de Educación Superior, Ciencia, Tecnología e Innovación - Senescyt.

Appendix

Appendix

Lemma 8

Let \(\gamma \) and \(\sigma \) be two positive constants. The function \(\phi :\mathbb {R}\rightarrow \mathbb {R}\) defined by \(\phi (a):=\gamma \sigma \frac{ a}{\max (\sigma , \gamma |a|)}\) is Lipschitz continuous and semismooth.

Proof

Let us start by rewriting \(\phi (a)\) as \(\phi (a)=\gamma \sigma \frac{a}{\phi _m(a)}\), with \(\phi _m(a):=\max (\sigma ,\gamma |a|)\). Next, we notice that the max function is globally Lipschitz continuous with constant \(L_{max}\). This fact implies that

$$\begin{aligned} \begin{array}{lll} |\phi _m(a_1)-\phi _m(a_2)|= |\max (\sigma ,\gamma |a_1|)- \max (\sigma ,\gamma |a_2|)|\vspace{0.2cm}\\ \le \gamma L_{max}||a_1|-|a_2||\le \gamma L_{max}|a_1-a_2|,\,\, \forall a_1,a_2\in \mathbb {R}. \end{array} \end{aligned}$$
(78)

We conclude that \(\phi _m\) is Lipschitz continuous. Considering this result, we have that

$$\begin{aligned} \begin{array}{lll} |\phi (a_1)-\phi (a_2)| &{}=&{} \left| \gamma \sigma \frac{a_1}{\phi _m(a_1)} -\gamma \sigma \frac{a_2}{\phi _m(a_2)}\right| \vspace{0.2cm}\\ {} &{}=&{} \gamma \sigma \left| \frac{a_1}{\phi _m(a_1)}-\frac{a_2}{\phi _m(a_2)} +\frac{a_1}{\phi _m(a_2)}- \frac{a_1}{\phi _m(a_2)}\right| \vspace{0.2cm}\\ {} &{} \le &{} \gamma \sigma \left| a_1\left( \frac{\phi _m(a_2)- \phi _m(a_1)}{\phi _m(a_1)\phi _m(a_2)}\right) \right| +\gamma \sigma \left| \frac{1}{\phi _m(a_2)} (a_1 - a_2)\right| . \end{array} \end{aligned}$$

Now, it is clear that \(0<\sigma \le \phi _m(a_2)\), thus \(\frac{1}{\phi _m(a_2)}\le \frac{1}{\sigma }\). By plugging this inequality in the above expression, we have that

$$\begin{aligned} \begin{array}{lll} |\phi (a_1)-\phi (a_2)| &{}\le &{} \gamma \sigma \left| \frac{a_1}{\phi _m(a_1)}\left( \frac{\phi _m(a_2)- \phi _m(a_1)}{\sigma }\right) \right| +\gamma |a_1 - a_2|\vspace{0.2cm}\\ &{}=&{} \gamma \left| \frac{a_1}{\phi _m(a_1)}\right| \left| \phi _m(a_2)- \phi _m(a_1)\right| + \gamma |a_1-a_2|. \end{array} \end{aligned}$$

Finally, since \(\left| \frac{a_1}{\phi _m(a_1)}\right| \le \frac{1}{\gamma }\), we conclude, thanks to (78), that

$$\begin{aligned} |\phi (a_1)-\phi (a_2)| \le \gamma (L_{max} +1)|a_1-a_2|. \end{aligned}$$

Regarding the semismoothness of \(\phi \), note that the absolute value \(|\cdot |: \mathbb {R} \rightarrow \mathbb {R}\) and the function \(\max (0, \cdot ) : \mathbb {R} \rightarrow \mathbb {R}\) are both semismooth (see [39, Sect. 2.5] and [28, Lemma 3.1] respectively). Then, since the composition of semismooth functions in \(\mathbb {R}^n\) is a semismooth function [39, Prop. 2.9], it follows that \(\phi (a)\) is semismooth.

Remark 4

The function \(\varphi _j:\mathbb {R}^m \rightarrow \mathbb {R}\) defined by \(\varphi _j(a):=\gamma \sigma \frac{ a_j}{\max (g, \beta |a|)}\) is also Lipschitz continuous and semismooth. The proof of this assertion is analogous to the one given in Lemma 8.

Lemma 9

Let \(\phi ({{\,\mathrm{div}\,}}\mathbf {u}(x))=\displaystyle \sigma \gamma \frac{ {{\,\mathrm{div}\,}}\mathbf {u}(x)}{\max (\sigma , \gamma |{{\,\mathrm{div}\,}}\mathbf {u}(x)|)}\) with \(\gamma \) and \(\sigma \) positive constants. A measurable selection \(M_{\phi }( \mathbf {u})\) of Clarke’s generalized Jacobian \( \partial \phi ({{\,\mathrm{div}\,}}\mathbf {u}) \) is :

$$\begin{aligned} M_{\phi }( \mathbf {u}(x))={\left\{ \begin{array}{ll} \displaystyle \sigma \frac{1}{|{{\,\mathrm{div}\,}}\mathbf {u}(x)|} \, - \sigma \displaystyle \frac{({{\,\mathrm{div}\,}}\mathbf {u}(x) {{\,\mathrm{div}\,}}\mathbf {u}(x)) }{|{{\,\mathrm{div}\,}}\mathbf {u}(x)|^3}, &{} if \,\, \gamma |{{\,\mathrm{div}\,}}\mathbf {u}(x)| \ge \sigma \vspace{0.2cm} \\ \gamma , &{} if \,\, \gamma |{{\,\mathrm{div}\,}}\mathbf {u}(x)| < \sigma . \end{array}\right. } \end{aligned}$$
(79)

a.e on \(\Omega \)

Proof

Let \(\phi _3=\phi _1 \circ \phi _2\), where \(\phi _1(z)= \max (0,z) + \sigma \) and \(\phi _2(y)= \gamma |y| - \sigma \). Then the following identity holds:

$$\begin{aligned} \phi _3(y)=\max (\sigma , \gamma |y|)= \max (0, \gamma | y| -\sigma ) + \sigma . \end{aligned}$$

From [28, pp. 869] we have that \( M_{\phi _1}( \gamma |y| - \sigma ) \in \partial \phi _1(\gamma |y| - \sigma )\) given by

$$\begin{aligned} M_{\phi _1}( \gamma |y| - \sigma )={\left\{ \begin{array}{ll} 1 , &{} if \,\, \gamma |y| - \sigma >0\\ 0, &{} if \,\, \gamma |y| - \sigma \le 0, \end{array}\right. } \end{aligned}$$

is a measurable selection of \(\partial \phi _1(\gamma |y| - \sigma )\). Next, since \(\phi _2\) involves the function \(| \cdot |\) evaluated at \(y\ne 0\). From [39, Exaple 2.5.1] we have that

$$\begin{aligned} M_{\phi _2}(y)\in \partial \phi _2(y)=\displaystyle \bigg \{ \frac{\gamma y }{|y|}\bigg \} \, \text {for } y \ne 0 . \end{aligned}$$

Moreover, the chain rule for Clarke’s generalized Jacobian [39, Prop. 2.3] yields that:

$$\begin{aligned} M_{\phi _3}(y) v \in \partial \phi _3(y) v \subset co\{ M_{\phi _1} M_{\phi _2} v: M_{\phi _1} \in \partial \phi _1( \phi _2(y)) , M_{\phi _2} \in \partial \phi _2(y)\}. \end{aligned}$$

Thus, since \(y \ne 0\),

$$\begin{aligned} M_{\phi _3}(y)={\left\{ \begin{array}{ll} \frac{\gamma y }{|y|} , &{} if \,\, \gamma |y| - \sigma >0\\ 0, &{} if \,\, \gamma |y| - \sigma \le 0, \end{array}\right. } \end{aligned}$$
(80)

Clearly, \(\phi (y)= \sigma \gamma \frac{y}{ \phi _3(y)}\). Then, from the composition of functions we obtain that

$$\begin{aligned} M_{\phi }(y) \in \partial \phi (y) \subseteq \sigma \gamma \frac{\phi _3(y) \cdot 1 - y \partial \phi _3(y)\,\, }{\phi _3(y)^2}. \end{aligned}$$

Then, from (80) the following cases can occur:

  • \(\gamma | y| > \sigma \). Then:

    $$\begin{aligned} M_{\phi }(y) = \displaystyle \sigma \frac{1}{|y|} \, - \sigma \displaystyle \frac{y^2}{|y|^3} = 0. \end{aligned}$$
  • \(\gamma | y| \le \sigma \) gives:

    $$\begin{aligned} M_{\phi }(y) = \gamma . \end{aligned}$$

Finally, by taking \(y={{\,\mathrm{div}\,}}\mathbf {u}(x)\) we have the desired result.

Remark 5

The measurable selection \(N_j( \mathbf { u}(x))\) of Clarke’s generalized Jacobian \( \partial \varphi _j(\mathcal {E} \mathbf {u}(x))\) is obtained by an analogous procedure to Lemma 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Andrade, S., López-Ordóñez, S. & Merino, P. Nonsmooth exact penalization second-order methods for incompressible bi-viscous fluids. Comput Optim Appl 80, 979–1025 (2021). https://doi.org/10.1007/s10589-021-00314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00314-2

Keywords

Mathematics Subject Classification

Navigation