Alternating conditional gradient method for convex feasibility problems | Computational Optimization and Applications Skip to main content
Log in

Alternating conditional gradient method for convex feasibility problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The classical convex feasibility problem in a finite dimensional Euclidean space consists of finding a point in the intersection of two convex sets. In the present paper we are interested in two particular instances of this problem. First, we assume to know how to compute an exact projection onto one of the sets involved and the other set is compact such that the conditional gradient (CondG) method can be used for computing efficiently an inexact projection on it. Second, we assume that both sets involved are compact such that the CondG method can be used for computing efficiently inexact projections on them. We combine alternating projection method with CondG method to design a new method, which can be seen as an inexact feasible version of alternate projection method. The proposed method generates two different sequences belonging to each involved set, which converge to a point in the intersection of them whenever it is not empty. If the intersection is empty, then the sequences converge to points in the respective sets whose distance between them is equal to the distance between the sets in consideration. Numerical experiments are provided to illustrate the practical behavior of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79(3), 418–443 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26(2), 248–264 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces. In: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). With a foreword by Hédy Attouch

  6. Beck, A., Teboulle, M.: A conditional gradient method with linear rate of convergence for solving convex linear systems. Math. Methods Oper. Res. 59(2), 235–247 (2004)

    Article  MathSciNet  Google Scholar 

  7. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, Philadelphia (2014)

    Book  Google Scholar 

  8. Brègman, L.M.: Finding the common point of convex sets by the method of successive projection. Dokl. Akad. Nauk. SSSR 162, 487–490 (1965)

    MathSciNet  Google Scholar 

  9. Carderera, A., Pokutta, S.: Second-Order Conditional Gradient Sliding. arXiv e-prints, page arXiv:2002.08907 (Feb. 2020), 2002.08907

  10. Cegielski, A., Reich, S., Zalas, R.: Regular sequences of quasi-nonexpansive operators and their applications. SIAM J. Optim. 28(2), 1508–1532 (2018)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Cegielski, A.: Projection methods: an annotated bibliography of books and reviews. Optimization 64(11), 2343–2358 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10, 448–450 (1959)

    Article  MathSciNet  Google Scholar 

  13. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm. ACM Trans. Algorithms 6(4), 30 (2010)

    Article  MathSciNet  Google Scholar 

  14. Combettes, P.L.: The foundations of set theoretic estimation. Proc. IEEE 81(2), 182–208 (1993)

    Article  MathSciNet  Google Scholar 

  15. Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic Press, New York (1996)

    Google Scholar 

  16. Combettes, P.L.: Hard-constrained inconsistent signal feasibility problems. EEE Trans. Sig. Process. 47, 2460–2468 (1999)

    Article  Google Scholar 

  17. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), vol. 8 of Stud. Comput. Math., pp. 115–152. North-Holland, Amsterdam (2001)

  18. Díaz Millán, R., Lindstrom, S.B., Roshchina, V.: Comparing averaged relaxed cutters and projection methods: theory and examples. In: Special Springer Volume Commemorating Jon Borwein, Springer Proceedings in Mathematics Statistics (to appear) (2019)

  19. Drusvyatskiy, D., Lewis, A.S.: Local linear convergence for inexact alternating projections on nonconvex sets. Vietnam J. Math. 47(3), 669–681 (2019)

    Article  MathSciNet  Google Scholar 

  20. Dunn, J.C.: Convergence rates for conditional gradient sequences generated by implicit step length rules. SIAM J. Control Optim. 18(5), 473–487 (1980)

    Article  MathSciNet  Google Scholar 

  21. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Log. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  22. Freund, R.M., Grigas, P.: New analysis and results for the Frank–Wolfe method. Math. Program. 155(1–2, Ser. A), 199–230 (2016)

    Article  MathSciNet  Google Scholar 

  23. Fukushima, M.: A modified Frank–Wolfe algorithm for solving the traffic assignment problem. Transp. Res. Part B 18(2), 169–177 (1984)

    Article  MathSciNet  Google Scholar 

  24. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Program. 35(1), 58–70 (1986)

    Article  MathSciNet  Google Scholar 

  25. Garber, D., Hazan, E.: Faster rates for the Frank–Wolfe method over strongly-convex sets. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37, pp. 541–549 (2015)

  26. Gonçalves, M.L.N., Melo, J.G.: A Newton conditional gradient method for constrained nonlinear systems. J. Comput. Appl. Math. 311, 473–483 (2017)

    Article  MathSciNet  Google Scholar 

  27. Han, S.-P.: A successive projection method. Math. Program. 40(1, Ser. A), 1–14 (1988)

    Article  MathSciNet  Google Scholar 

  28. Hesse, R., Luke, D.R., Neumann, P.: Alternating projections and Douglas–Rachford for sparse affine feasibility. IEEE Trans. Sig. Process. 62(18), 4868–4881 (2014)

    Article  MathSciNet  Google Scholar 

  29. Iusem, A.N., Jofré, A., Thompson, P.: Incremental constraint projection methods for monotone stochastic variational inequalities. Math. Oper. Res. 44(1), 236–263 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Jaggi, M.: Revisiting Frank–Wolfe: projection-free sparse convex optimization. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, vol. 28, ICML’13:I–427–I–435, (2013)

  31. Lan, G., Zhou, Y.: Conditional gradient sliding for convex optimization. SIAM J. Optim. 26(2), 1379–1409 (2016)

    Article  MathSciNet  Google Scholar 

  32. Levitin, E.S., Poljak, B.T.: Minimization methods in the presence of constraints. USSR Comput. Math. Math. Phys. 6, 1–50 (1966)

    Article  MathSciNet  Google Scholar 

  33. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009)

    Article  MathSciNet  Google Scholar 

  34. Luss, R., Teboulle, M.: Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint. SIAM Rev. 55(1), 65–98 (2013)

    Article  MathSciNet  Google Scholar 

  35. Rothvoss, T.: The matching polytope has exponential extension complexity. J. ACM 64(6), 19 (2017)

    Article  MathSciNet  Google Scholar 

  36. von Neumann, J.: Functional Operators. II. The Geometry of Orthogonal Spaces. Annals of Mathematics Studies. Princeton University Press, Princeton (1950)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments, which have helped to substantially improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors was supported in part by CNPq Grants 305158/2014-7 and 302473/2017-3, FAPEG/PRONEM- 201710267000532, CNPq Grants 424860/2018-0, 309628/2020-2, FAPEG PPP03/15-201810267001725.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz Millán, R., Ferreira, O.P. & Prudente, L.F. Alternating conditional gradient method for convex feasibility problems. Comput Optim Appl 80, 245–269 (2021). https://doi.org/10.1007/s10589-021-00293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00293-4

Keywords

Mathematics Subject Classification

Navigation