Abstract
We propose a regularization method for nonlinear least-squares problems with equality constraints. Our approach is modeled after those of Arreckx and Orban (SIAM J Optim 28(2):1613–1639, 2018. https://doi.org/10.1137/16M1088570) and Dehghani et al. (INFOR Inf Syst Oper Res, 2019. https://doi.org/10.1080/03155986.2018.1559428) and applies a selective regularization scheme that may be viewed as a reformulation of an augmented Lagrangian. Our formulation avoids the occurrence of the operator \(A(x)^T A(x)\), where A is the Jacobian of the nonlinear residual, which typically contributes to the density and ill conditioning of subproblems. Under boundedness of the derivatives, we establish global convergence to a KKT point or a stationary point of an infeasibility measure. If second derivatives are Lipschitz continuous and a second-order sufficient condition is satisfied, we establish superlinear convergence without requiring a constraint qualification to hold. The convergence rate is determined by a Dennis–Moré-type condition. We describe our implementation in the Julia language, which supports multiple floating-point systems. We illustrate a simple progressive scheme to obtain solutions in quadruple precision. Because our approach is similar to applying an SQP method with an exact merit function on a related problem, we show that our implementation compares favorably to IPOPT in IEEE double precision.





Similar content being viewed by others
Notes
julialang.org.
github.com/NLPModelsIpopt.jl.
github.com/JuliaDiff/ForwardDiff.jl.
References
Andreani, R., Martínez, J., Ramos, A., Silva, P.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26(1), 96–110 (2016). https://doi.org/10.1137/15M1008488
Ansari, M.R., Mahdavi-Amiri, N.: A robust combined trust region-line search exact penalty projected structured scheme for constrained nonlinear least squares. Optim. Methods Softw. 30(1), 162–190 (2014). https://doi.org/10.1080/10556788.2014.909970
Armand, P., Omheni, R.: A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization. Optim. Methods Softw. 32(1), 1–21 (2015). https://doi.org/10.1080/10556788.2015.1025401
Armand, P., Benoist, J., Orban, D.: From global to local convergence of interior methods for nonlinear optimization. Optim. Methods Softw. 28(5), 1051–1080 (2013). https://doi.org/10.1080/10556788.2012.668905
Armand, P., Benoist, J., Omheni, R., Pateloup, V.: Study of a primal-dual algorithm for equality constrained minimization. Comput. Optim. Appl. 59(3), 405–433 (2014). https://doi.org/10.1007/s10589-014-9679-3
Arreckx, S., Orban, D.: A regularized factorization-free method for equality-constrained optimization. SIAM J. Optim. 28(2), 1613–1639 (2018). https://doi.org/10.1137/16M1088570
Bartholomew-Biggs, M.C., Hernandez, M.D.F.G.: Using the KKT matrix in an augmented Lagrangian SQP method for sparse constrained optimization. J. Optim. Theory Appl. 85(1), 201–220 (1995). https://doi.org/10.1007/BF02192305
Bellavia, S., Gurioli, G., Morini, B., Toint, Ph.L.: Adaptive regularization algorithms with inexact evaluations for nonconvex optimization. Technical report, University of Namur, (2018). URL http://www.optimization-online.org/DB_HTML/2018/11/6919.html
Bidabadi, N.: Using a spectral scaling structured BFGS method for constrained nonlinear least squares. Optim. Methods Softw. (2017). https://doi.org/10.1080/10556788.2017.1385073
Bidabadi, N., Mahdavi-Amiri, N.: Superlinearly convergent exact penalty methods with projected structured secant updates for constrained nonlinear least squares. J. Optim. Theory Appl. 162(1), 154–190 (2013). https://doi.org/10.1007/s10957-013-0438-x
Davis, T.A.: Algorithm 849: a concise sparse Cholesky factorization package. ACM Trans. Math. Softw. 31(4), 587–591 (2005). https://doi.org/10.1145/1114268.1114277
Dehghani, M., Lambe, A., Orban, D.: A regularized interior-point method for constrained linear least squares. INFOR: Inf. Syst. Oper. Res. (2019). https://doi.org/10.1080/03155986.2018.1559428
Dekker, T.J.: A floating-point technique for extending the available precision. Numer. Math. 18(3), 224–242 (1971). https://doi.org/10.1007/BF01397083
Dennis, J.E., Moré, J.J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977). https://doi.org/10.1137/1019005
Dennis, J.E., Walker, H.F.: Convergence theorems for least-change secant update methods. SIAM J. Numer. Anal. 18(6), 949–987 (1981)
Dennis Jr., J.E., Gay, D.M., Welsch, R.E.: An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Softw. 7(3), 348–368 (1981). https://doi.org/10.1145/355958.355965
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profile. Math. Program. Ser. A 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263
Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30(2), 118–144 (2004). https://doi.org/10.1145/992200.992202
Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/15M1020575
Fernanda, M., Costa, P., Fernandes, E.M.G.P.: A primal-dual interior-point algorithm for nonlinear least squares constrained problems. Top 13(1), 145–166 (2005). https://doi.org/10.1007/bf02578992
Fernández, D., Solodov, M.: Stabilized sequential quadratic programming: a survey. Pesq. Oper. 34(3), 463–479 (2014). https://doi.org/10.1590/0101-7438.2014.034.03.0463
Fernández, D., Pilotta, E.A., Torres, G.A.: An inexact restoration strategy for the globalization of the sSQP method. Comput. Optim. Appl. 54(3), 595–617 (2012). https://doi.org/10.1007/s10589-012-9502-y
Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math. 43(1–2), 91–107 (2002). https://doi.org/10.1016/s0168-9274(02)00119-8
Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic programs. Math. Program. Comp. 4(1), 71–107 (2012). https://doi.org/10.1007/s12532-012-0035-2
Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: superlinear convergence. Math. Program. 163(1–2), 369–410 (2016). https://doi.org/10.1007/s10107-016-1066-7
Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. IMA J. Numer. Anal. 37(1), 407–443 (2016). https://doi.org/10.1093/imanum/drw004
Gould, N.I., Orban, D., Toint, Ph.L.: CUTEst: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015). https://doi.org/10.1007/s10589-014-9687-3
Gould, N.I.M.: On the accurate determination of search directions for simple differentiable penalty functions. IMA J. Numer. Anal. 6(3), 357–372 (1986). https://doi.org/10.1093/imanum/6.3.357
Gratton, S., Toint, Ph.L.: A note on solving nonlinear optimization problems in variable precision. Technical report, University of Namur, (2018). URL http://www.optimization-online.org/DB_HTML/2018/12/6982.html
Gratton, S., Simon, E., Toint, Ph.L.: Minimizing convex quadratic with variable precision Krylov methods. Technical report, University of Namur, (2018). arXiv:1807.07476
Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37 of ICML’15, pp. 1737–1746. JMLR.org (2015). http://dl.acm.org/citation.cfm?id=3045118.3045303
Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48320-2
HSL. The HSL Mathematical Software Library. STFC Rutherford Appleton Laboratory (2007). http://www.hsl.rl.ac.uk
Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Combining stabilized SQP with the augmented Lagrangian algorithm. Comput. Optim. Appl. 62(2), 405–429 (2015). https://doi.org/10.1007/s10589-015-9744-6
Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Globalizing stabilized sequential quadratic programming method by smooth primal-dual exact penalty function. J. Optim. Theory Appl. 169(1), 148–178 (2016). https://doi.org/10.1007/s10957-016-0889-y
Li, Z., Osborne, M., Prvan, T.: Adaptive algorithm for constrained least-squares problems. J. Optim. Theory Appl. 114(2), 423–441 (2002). https://doi.org/10.1023/A:1016043919978
Li, Z.F.: On limited memory SQP methods for large scale constrained nonlinear least squares problems. ANZIAM J. 42, 900 (2000). https://doi.org/10.21914/anziamj.v42i0.627
Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization. Technical Report V-767, Prague: ICS AS CR (1999)
Ma, D., Saunders, M.A.: Solving multiscale linear programs using the simplex method in quadruple precision. In: Numerical analysis and optimization, pp. 223–235. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-17689-5_9
Mahdavi-Amiri, N., Ansari, M.R.: A superlinearly convergent penalty method with nonsmooth line search for constrained nonlinear least squares. Sultan Qaboos Univ. J. Sci. [SQUJS] 17(1), 103 (2012). https://doi.org/10.24200/squjs.vol17iss1pp103-124
Mahdavi-Amiri, N., Bartels, R.H.: Constrained nonlinear least squares: an exact penalty approach with projected structured quasi-Newton updates. ACM Trans. Math. Softw. 15(3), 220–242 (1989). https://doi.org/10.1145/66888.66891
Mahdavi-Amiri, N., Bidabadi, N.: Constrained nonlinear least squares: a superlinearly convergent projected structured secant method. Int. J. Electr. Comput. Syst. (2012). https://doi.org/10.11159/ijecs.2012.001
Martínez, J.M., Santos, L.T.: Some new theoretical results on recursive quadratic programming algorithms. J. Optim. Theory Appl. 97, 435–454 (1998). https://doi.org/10.1023/A:1022686919295
Micikevicius, P., Narang, S., Alben, J., Diamos, G.F., Elsen, E., García, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., Wu, H.: Mixed precision training. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings (2018). https://openreview.net/forum?id=r1gs9JgRZ
Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981). https://doi.org/10.1145/355934.355936
Orban, D., Arioli, M.: Iterative Solution of Symmetric Quasi-Definite Linear Systems. SIAM Spotlights. Society for Industrial and Applied Mathematics Philadelphia (2017). https://doi.org/10.1137/1.9781611974737
Orban, D., Siqueira, A.S.: JuliaSmoothOptimizers, a framework for development of nonlinear optimization methods in Julia. Technical report, Les Cahiers du GERAD (2020). In preparation
Schittkowski, K.: Solving constrained nonlinear least squares problems by a general purpose SQP-method. In: Hoffmann, K.-H., Zowe, J., Hiriart-Urruty, J.-B., Lemaréchal, C. (eds.) Trends in Mathematical Optimization: 4th French–German Conference on Optimization, pp. 295–309. Birkhäuser, Basel (1988). https://doi.org/10.1007/978-3-0348-9297-1_19. ISBN 978-3-0348-9297-1
Schittkowski, K.: NLPLSQ: a Fortran implementation of an SQP-Gauss-Newton algorithm for least squares optimization. Technical report, Department of Computer Science, University of Bayreuth (2007)
Vanderbei, R.J.: Symmetric quasidefinite matrices. SIAM J. Optim. 5(1), 100–113 (1995). https://doi.org/10.1137/0805005
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y
Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11(3), 253–275 (1998). https://doi.org/10.1023/A:1018665102534
Acknowledgements
We are very grateful to two anonymous referees for numerous comments and suggestions that greatly improved the presentation of this work.
Funding
Dominique Orban: Research partially supported by an NSERC Discovery Grant.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Orban, D., Siqueira, A.S. A regularization method for constrained nonlinear least squares. Comput Optim Appl 76, 961–989 (2020). https://doi.org/10.1007/s10589-020-00201-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-020-00201-2