A modified proximal point method for DC functions on Hadamard manifolds | Computational Optimization and Applications Skip to main content
Log in

A modified proximal point method for DC functions on Hadamard manifolds

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study the convergence of a modified proximal point method for DC functions in Hadamard manifolds. We use the iteration computed by the proximal point method for DC function extended to the Riemannian context by Souza and Oliveira (J Glob Optim 63:797–810, 2015) to define a descent direction which improves the convergence of the method. Our method also accelerates the classical proximal point method for convex functions. We illustrate our results with some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ansari, Q.H., Babu, F., Yao, J.C.: Regularization of proximal point algorithms in Hadamard manifolds. J. Fixed Point Theory Appl. (2019). https://doi.org/10.1007/s11784-019-0658-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Aragón Artacho, F.J., Fleming, R.M.T., Vuong, P.T.: Accelerating the DC algorithm for smooth functions. Math. Program. 169, 95–118 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Bačák, M., Borwein, J.M.: On difference convexity of locally Lipschitz functions. Optimization 60, 961–978 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689–701 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bento, G.C., Bitar, S.D.B., Cruz Neto, J.X., Soubeyran, A., Souza, J.C.O.: A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems. Comput. Optim. Appl. 75, 1–28 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bento, G.C., Ferreira, O.P., Melo, J.G.: Iteration-complexity of gradient, subgradient and proximal point methods on Riemannian manifolds. J. Optim. Theory Appl. 173(2), 548–562 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Boumal, N., Mishira, B., Absil, P.-A., Sepulchre, R.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014)

    MATH  Google Scholar 

  10. Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesics algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3, 89–100 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Cruz Neto, J.X., Oliveira, P.R., Soubeyran, A., Souza, J.C.O.: A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-3104-8

    Article  Google Scholar 

  12. Dinh, N., Strodiot, J.J., Nguyen, V.H.: Duality and optimality conditions for generalized equilibrium problems involving DC functions. Glob. Optim. 48, 183–208 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    MATH  Google Scholar 

  14. Fernández Cara, E., Moreno, C.: Critical point approximation through exact regularization. Math. Comput. 50, 139–153 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Ferreira, O.P., Louzeiro, M.S., Prudente, L.F.: Gradient method for optimization on Riemannian manifolds with lower bounded curvature. SIAM J. Optim. 29(4), 2517–2541 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on riemannian manifolds. Optimization 51, 257–270 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Ferrer, A., Bagirov, A., Beliakov, G.: Solving DC programs using the cutting angle method. J. Glob. Optim. 61, 71–89 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Flores-Bazán, F., Oettli, W.: Simplified optimality conditions for minimizing the difference of vector-valued functions. J. Optim. Theory Appl. 108, 571–586 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37, 177–219 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Guo, X.L., Li, S.J.: Optimality conditions for vector optimization problems with difference of convex maps. J. Optim. Theory Appl. 162, 821–844 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    MathSciNet  MATH  Google Scholar 

  22. Hiriart-Urruty, J.B.: Generalized differentiabity, duality and optimization for problems dealing with difference of convex functions. In: Lecture Notes in Economics and Mathematical Systems, Convexity Duality Optimization, vol. 256, pp. 37–70 (1986)

  23. Holmberg, K., Tuy, H.: A production-transportation problem with stochastic demand and concave production costs. Math. Program. 85, 157–179 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Lang, S.: Fundamentals of Differential Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  25. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25, 423–444 (2006)

    MathSciNet  Google Scholar 

  26. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Li, C., Yao, J.-C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Maingé, P.-E., Moudafi, A.: Convergence of new inertial proximal methods for DC programming. SIAM J. Optim. 19, 397–413 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Muu, L.D., Quoc, T.D.: One step from DC optimization to DC mixed variational inequalities. Optimization. 59, 63–76 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2, 333–361 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Pham, D.T., Souad, E.B.: Algorithms for solving a class of nonconvex optimization problems: methods of subgradient. Fermat Days 85: Math. Optim. 129, 249–271 (1986)

    MathSciNet  Google Scholar 

  32. Polyak, B.T.: Subgradient methods: a survey of Soviet research. Nonsmooth Optim. Proc. IIASA Workshop March 3, 5–30 (1978)

    MathSciNet  Google Scholar 

  33. Rothaus, O.S.: Domains of positivity. Abh. Math. Sem. Univ. Hamburg. 24, 189–235 (1960)

    MathSciNet  MATH  Google Scholar 

  34. Sakai, T.: Riemannian Geometry. American Mathematical Soc, Providence (1996)

    MATH  Google Scholar 

  35. Soubeyran, A.: Variational Rationality, A Theory of Individual Stability and Change: Worthwhile and Ambidextry Behaviors, Preprint at GREQAM. Aix Marseillle University, Marseille (2009)

    Google Scholar 

  36. Soubeyran, A.: Variational Rationality and the “Unsatisfied Man”: Routines and the Course Pursuit Between Aspirations, Capabilities and Beliefs, Preprint at GREQAM. Aix Marseillle University, Marseille (2010)

    Google Scholar 

  37. Soubeyran, A.: Variational Rationality: A Theory of Worthwhile Stay and Change Approach–Avoidance Transitions Ending in Traps, Preprint at GREQAM. Aix Marseillle University, Marseille (2016)

    Google Scholar 

  38. Souza, J.C.O., Oliveira, P.R.: A proximal point algorithm for DC functions on Hadamard manifolds. J. Glob. Optim. 63, 797–810 (2015)

    MATH  Google Scholar 

  39. Souza, J.C.O., Oliveira, P.R., Soubeyran, A.: Global convergence of a proximal linearized algorithm for difference of convex functions. Optim. Lett. 10, 1529–1539 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Souza, J.C.O.: Proximal point methods for Lipschitz functions on Hadamard manifolds: scalar and vectorial cases. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-1375-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun, W., Sampaio, R.J.B., Candido, M.A.B.: Proximal point algorithm for minimization of DC functions. J. Comput. Math. 21, 451–462 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Tao, P.D., An, L.T.H.: A DC optimization algorithm for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Tao, P.D., Souad, E.B.: Algorithms for solving a class of nonconvex optimization problems: methods of subgradient. Fermat Days 85: Math. Optim. 129, 249–271 (1986)

    MathSciNet  Google Scholar 

  44. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and dc optimization problems. Math. Program 41, 161–183 (1988)

    MATH  Google Scholar 

  45. Ugwunnadi, G.C., Khan, A.R., Abbas, M.: A hybrid proximal point algorithm for finding minimizers and fixed points in CAT(0) spaces. J. Fixed Point Theory Appl. (2018). https://doi.org/10.1007/s11784-018-0555-0

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, J., Li, C., López, G., Yao, J.C.: Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61(3), 553–573 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Wang, J., Li, C., López, G., Yao, J.C.: Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26(4), 2696–2729 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Wang, X., Li, C., Wang, J., Yao, J.C.: Linear convergence of subgradient algorithm for convex feasibility on Riemannian manifolds. SIAM J. Optim. 25(4), 2334–2358 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Wang, X., Li, C., Yao, J.C.: Subgradient projection algorithms for convex feasibility on Riemannian manifolds with lower bounded curvatures. J. Optim. Theory Appl. 164(1), 202–217 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69, 297–324 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 305462/2014-8, 424169/2018-5, 302678/2017-4, 308330/2018-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. The authors wish to express their gratitude to the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos de Oliveira Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, Y.T., da Cruz Neto, J.X., Oliveira, P.R. et al. A modified proximal point method for DC functions on Hadamard manifolds. Comput Optim Appl 76, 649–673 (2020). https://doi.org/10.1007/s10589-020-00173-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00173-3

Keywords

Navigation